HW 5 Due on Wednesday, October 18, 2017 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.13

Submission instructions as in previous homeworks.

1 (100 prs.) Break up!

You are given a vertical pile of n books. The books are numbered 1,2,...,n (in this order from the
bottom of the pile). The ith book has weight w;. Given a pile of books [i .. j], you can pick an index
i <k < j, and break the pile into two piles [i .. k], and [k + 1 .. j]. Since the books are heavy, performing
such an operation requires » _, w; units of energy, where wy is the weight of the ¢th book.

The task at hand is to break the given pile of n books into n piles of single books, using the above
breakup operation. Note, that given a pile of books, the energy required to break it up into two piles is
always the same — it is the total weight of the pile. In particular, moving repeatedly just the top book of
the pile is probably not going to be the optimal solution.

For example, if the initial pile is By is [1 .. 5] a solution might be a sequence of commands:

e Break [1.. 5] into two piles [1..2] and [3.. 5].
e Break [1.. 2] into two piles [1] and [2].

e Break [3..5] into [3.. 4] and [5]

e Break [3.. 4] into [3] and [4].

It is easy to verify that the total energy required to implement this solution is 2w + 2ws + 3ws + 3w, + 2ws.

1.A. (70 pTs.) Let &£ be the minimum total energy required by any solution that breaks the given pile
into singletons. Describe an algorithm, as fast as possible, that computes £. Bound the running time
of your algorithm.

Solution:

Given a set of books [1 .. n], let’s consider an algorithm minEnergy (i, j) that outputs the minimum
amount of energy it takes to split books [i .. j] into 5 — i + 1 piles, given an array of weights w[i..j].

We have a simple base case when ¢ = j; this would just be a single pile of one book, which can be
split no further, so it would take 0 units of energy. In the recursive case, we need to consider all the
possible ways to split books [i .. j] into two piles [i ..] and [l +1 .. j] and take the minimum total
energy to split each of those two piles.

Stated as a recurrence, we have:
0 ifi>j
minEnergy (i, j) =

J
> wlk] + min {minEnergy(i,!) + minEnergy(l + 1,5)} otherwise
k=i 1SS

We can memoize all possible values of minEnergy (i, j) in a two-dimensional array dp[l..n,1..n] and
J
the sum Y w[k| in another two-dimensional array dpsum(1..n,1..n|. In terms of evaluation order, we
k=i
can see that dp[i, j] depends on entries dp[k, j] and dp[i,!] where i < k < jand i+ 1<!<j.

Thus, we have the following algorithm:

1.B.

minEnergy (w[1..n]):
fori+ 1tondo
for j <~ 1 ton do
dpl[i, j] < 0
dpsum|i, j] <~ NONE
fori<+ ntoldo
for j < ¢ ton do
if i # j then
if dpsum[i, j| = NONE then
dpsum|[i, j] - sum(wli..j])
dpl¢, j] + dpsumli, j] + Z_<§cn<i§1_l dp[i, k|+dplk + 1, j]

return dp[1, n]

Filling in an entry dp[i, j] takes O(n) time, since we must find the minimum of j — ¢ sums, which is
bounded by n. So we have a total running time of O(n?®). Since we keep two n x n arrays, the space
complexity is O(n?).

(30 p1S.) Describe how to modify your algorithm in (A) so that it computes the solution itself (i.e.,
the sequence of breakup operations in the optimal solution). Describe the algorithm/procedure that
outputs this solution once it is computed.

Solution:

To compute the solution itself, we can keep track of another table called ‘splits’, where splits[z, j] will
keep track of the start and end indices for the two piles that mark an optimal split for books [.. j].
The sequence of piles can be obtained by following the indices in ‘splits’ until we reach piles of size 1.

minEnergy (w[1..n]):
fori<+ 1tondo
for j < 1ton do
dp[i, 4] « 0
dpsuml[i, j] < NONE
splits[i, j] < NONE
fori <+ ntoldo
for j <+ i ton do
if i # j then
if dpsum|[i, j| = NONE then
dpsum([i, j] — sum(wl[i..j])
submin < oo
for k+itoj—1do
s < dp[i, k] + dp[k + 1, j]
if s < submin then
submin < s
minind < k
splits[i, j] - [(¢, minind), (minind+1, j)]
dpli, j] - dpsum]é, j] + submin
// Let’s assume printCoords has access to splits as a global variable
printCoords(1,n)

// prints the weights of the books in each intermediate pile
printCoords(z, j):
print w(i..j]
if ¢ # j then
for z,y in splits[i, j] do
printCoords(z, y)

2 (100 pTS.) Wireless routers.

You are given n locations 41, ...,%, of people living on Red street. Here ¢; is the distance of the ith
person from the beginning of the street in feet (Red street is straight), where ¢1 < ly < -+ < £,,.

We would like to install k£ wireless routers to serve these people need. Specifically, for a set of locations
Y ={y1,-.., Yk}, the cost of this solution to the ith customer is the distance of ¢; to its nearest wireless
routers in Y to the power four. Formally, it is cost(¢;,Y) = mingey (y — £)* = (& — nn(£;,Y))*, where
nn(4;,Y) is the location of the nearest point to ¢; in Y. Indeed, the further a person’s computer is from a
wireless router, the stronger the signal his computer has to use to communicate with the router, and the
energy of this signal grows as (say) a fourth power of the distance.

The cost of the solution Y is cost(Y) = >, cost(¢;,Y).

Given the n locations 41, ...,4, and k, provide an algorithm, as fast as possible (in n and k), that
computes the set Y C {¢,...,4,} of k routers, such that cost(Y’) is minimal. What is the running time
of your algorithm? (Note, that the routers can be placed only in the given locations of the houses'.)

Solution: This is the solution

Cost(L[0...n — 1]):
cost -0
leftRouter < L|0]
rightRouter < Ln — 1]
for i+ 1ton—2do
rightCost < L[0] — L[]
rightCost < rightCost-right Cost
leftCost < L[i] — L[n — 1]
leftCost < leftCost - leftCost
if leftCost < rightCost then
cost < cost + leftCost - leftCost
else
cost < cost + rightCost - rightCost
return cost

Our algorithm works in the following way. It seeks to create the case where there are a substring of
locations where the beginning and end locations have a router and none of the others do. Then we place
a router at one of the middle locations and thus create two sub-problems that look exactly the same as
this with one less router to place.

!The variant where the routers can be placed anywhere is slightly harder — you can think about this variant for fun. Then you
can think about your life, and what you do for fun.

The first if statement covers the trivial case where there are more routers than locations, in which case it
is easy to cover these locations such that the cost is 0.

The next if statement covers the case where we have no routers left to place. Then because we as-
sume the first and last location have a router and none of the others do, it is easy to calculate the cost of
this substring based on the cost function specified by the problem which is implemented in Cost.

Finally the inner for loops are the recursive step. We choose a location from the middle to place a
router. That creates two substrings where the first and last location have routers. We recurse on all
possibilities of distributing the remaining routers among the two substrings. Of course the results are
cached in our memo table dp. This drastically improves the efficiency.

There is one final step for completeness where we place two imaginary routers infinitely far away from Red
Street. Don’t worry about this part, but that is what the first line does.

FindCosts(L[0...n — 1], n, k):
L + concat([—o0], L, [c0])
dp[n + 3][n + 3][n + 3]
fora <+ 2ton+2do
for numRouters < 0 to k£ do
forc< 0Oton+2—ado
if numRouters > a — 2 then
dp[a][numRouters|[c] + 0
continue
if numRouters = 0 then
subStrCost < Cost(L[c..(c+ a — 1)])
dp[a][numRouters][c] < subStrCost
continue
dp[a][numRouters][c] + oo
numRoutersLeft +— numRouters —1
forrss <~ c+1toc+a—2do
for leftRouters <— 0 to numRoutersLeft do
rightRouters «— numRoutersLeft - leftRouters
leftSubCost < dp[rss — ¢ + 1|[leftRouters|[c]
rightSubCost < dp[c + a — rss|[rightRouters][rss]
thisScenarioCost < leftSubCost+rightSubCost
minScenarioCost < dp[a][numRouters][c]
if thisScenarioCost < minScenarioCost then
dp[a][numRouters][c] < thisScenarioCost
return dp[n + 2][k][0]

The running time of Cost is as follows. There is one for loop bounded by the length of the array L.
Therefore Cost runs in O(L).

The running time of FindCosts is as follows. There are three outer loops, two are bounded by n and one
is bounded by k. Within the body of outer loops, there is a call to Cost. Cost runs linearly with the
length of the array passed to it. Next come two for loops one bounded by n and the other bounded by k.
Their body runs in O(1) time. Composed loops multiply the running time of their body by the product

of their bounds. Therefore the running time of FindCosts will be O(n? - k(n +n- k)) =03 k?)

3 (100 pTs.) A bridge too far.

You are planning a military campaign, and you had decided to break your army into two corps P and
Q (a corps is a military unit bigger than a division). Corps P would occupy cities p1,p2,...,pn (in this
order), while the other corps @ would occupy cities qi,...,gm (in this order). The problem of course is
that if P is in city p;, and it is being attacked, then the second corps @ (which might be at city g;), should
be close enough to be able to provide support to P2.

To this end, you are given numbers nm numbers, where d(i, j) is the distance between p; and g;, for
i=1,...,nand j =1,...m. You are also given a threshold £. You need now to schedule the movements
of the two corps. Specifically, you need to output a schedule (i1, j1),- .., (i, j:). Here (i, jx) denotes that
in the beginning of the kth week of the campaign P would be at city p;,, and @ would be at city g, .

Formally, the requirements on the computed schedule are the following:

(I) 4 =1and j; =1 (i.e., the campaign starts with P at p; and @ at q1).
it = n and j; = m (i.e., the campaign ends with P at p, and Q at g¢,).
For any k, 1 < k < t, we have d(ig, jx) < L.

For any k, we have that either ix+1 = ix + 1 or jrx+1 = jx + 1 (but not both — only one corps
can move at any point in time). [As such, t =n+m — 1]

)
)
)
)

3.A. (50 pTs.) Given the above input, provide an algorithm, as efficient as possible, that computes whether
there is a feasible schedule that complies with all the above conditions. What is the running time of
your algorithm? Argue shortly why your algorithm is correct (and why the stated running time is
correct).

Solution:

Let’s consider a function feasible?(k,t) that returns whether or not there exists a feasible schedule
given that P is at city pg and Q is at city g;.

We can define a recurrence for this function as follows:

(TRUE if k=nand t =m and d(k,t) <!
FALSE ifk>mnort>mord(k,t)>1
feasible?(k,t) = < feasible?(k + 1,t) ift=m
feasible?(k,t + 1) ifk=n
| feasible?(k + 1,t) V feasible?(k,t + 1) otherwise

We can memoize the results of this function in a n x m array ‘dp’, where dp[i, j] yields whether or
not a feasible schedule exists from city p; and g;. To fill this table, notice that if you fix a cell, the
value of that cell depends on the cells immediately to the right and below (assuming (0,0) is at the
top left corner). Thus we must fill the table in reverse order, from n to 1 and m to 1.

Here, we assume that m,n, and d are global variables.

2Failing to have such close by support might end up in a military disaster — see the movie “a bridge too far”.

3.B.

3.C.

feasible?(l):
for 7 < m down to 1 do
for j < n down to 1 do
dpli, j] < FALSE
for ¢t <~ m down to 1 do
for k <~ n down to 1 do
if k =n and t = m and d(k,t) <[then
dplt, k] < TRUE
else if k > n ort > m or d(k,t) > [then
dplt, k] < FALSE
else if £ = m then
dp[t, k] < dplt, k + 1]
else if K = n then
dp[t, k] < dp[t + 1, k]
else
dp[t, k] < dp[t+ 1,k] Vv dp[t, k + 1]
return dp[1, 1]

Filling up the memo table takes O(mn) time since there are mn entries, each of which requires only
O(1) time to compute. This algorithm also has an O(mn) space complexity.

(10 p1S.) Describe how to modify the algorithm in (A) so that it outputs the feasible schedule.

Solution:

To output the feasible schedule, we can keep another n x m memo table ’sched’ where sched|i, j]
contains a tuple representing the movement for the next week that would take the corps to the
destination cities; i.e. sched[ik, jk| = (ik+1, Jk+1)-

Assume ’sched’ is initialized to NONE for each element in the beginning. In line 12, we add a line
below to store sched[i, j] < (¢, k+1) if dp[t, k + 1] = TRUE. Similarly, in line 14, we add a line to store
sched[i, j] < (¢ + 1,k) if dp[t + 1, k] = TRUE. On line 16, we check both dp[t + 1, k| and dp[t, k + 1]
and store the indices of the first of the two that contains TRUE, doing nothing if neither evaluates to
TRUE.

To recover the schedule, we first check if dp[1, 1] is TRUE. If so, we follow and print the indices starting
from sched[1, 1] until we reach sched[m,n].

(40 pTs.) Modify your algorithm so that it computes and outputs the smallest value of £, such that
there is still a feasible schedule. What is the running time of your algorithm?

Solution:
Let £k = maxd(i,5). We can see that 0 < £, < k. We can find k in O(mn) time by looking at
i

all pairs 4, j over d. Now suppose we have an £ such that 0 < ¢ < k and feasible?({) = FALSE. By
requirement (III) above, we can see that feasible?(¢') = FALSE for all ¢’ < £. Using this, we can find
Lmin by performing binary search over [0, k].

minLFeasible():
maxval - —oo
for i <~ 1 to n do
for j <~ 1 to m do
if d(¢,7) > maxval then
maxval < d(3, j)
return search(0,maxval)

search(a, 2):

if a > z then
return 2z

mdpt + [(a + 2)/2]

if feasible? (mdpt) then
return search(a, mdpt)

else
return search(mdpt+1, z)

This algorithm has a time complexity of O(mnlogk) since there are log k calls to feasible?, which
has O(mn) running time.

HW 6 Due on Wednesday, October 25, 2017 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.4

Submission instructions as in previous homeworks.

Unless stated otherwise, for all questions in this homework involving dynamic programming, you need to provide
a solution with explicit memoization.

1

(100 pTs.) No one expects the Spanish inquisition.
(This problem is somewhat easier than the usual homeworks problems.)

It is 1492 in Spain (the Jews were just kicked out of Spain, and Columbus just landed in the Bahamas
[an interesting year]) — unfortunately, the people in the town that you live in decided that you are a
witch, and it is only a question of time till the inquisition would come to investigate!. You can avoid the
investigation by paying bribes.

Fortunately, you got your hands on the organizational chart of the inquisition, which is a tree. The
leafs are the investigators, and the internal nodes are the supervisors. A person that corresponds to a
node u of this tree T', can be bought off by paying b, Maravedis (the Spanish money at the time), and
then they would suppress any investigation by anybody in their subtree.

Given a tree T as above with n nodes, the problem is to compute the set of people that you should
bribe, so that all possible investigations are suppressed, and that the total sum paid is minimal. As
example, consider the following tree (on the left, and a solution on the right).

1.A. (30 pt1s.) State the recursive formula (or formulas if needed) for computing the desired quantity —
and explain the logic behind it (in one sentence). What is the running time of your algorithm? (The
running time should be as good as possible, as usual.)

Note, that you need only to compute the price of the optimal solution — there is no need to output
the solution itself.

Solution:
Let C(v) denote set of children of node v in the tree 7'
Then, for a node v in the tree, we have:
by if v is a leaf

minBribeCost(v) = | i (bv, > minBribeCost(u)) otherwise
ueC(v)
Since a supervisor can suppress investigations in their subtree, we must compare the cost of bribing
the supervisor and the minimum cost of stopping the investigation further down in the subtree.

The recurrence for the above algorithm is given by:

T(n) = (1) + ZT(kz-), T(1) = 6(1)

where k; denotes the size of the subtree for the ith child of the root node under consideration.
Assume that T'(n’) < en’ for n’ < n. Then we have:

!For once, somebody is expecting the Spanish inquisition: https://www.youtube.com/watch?v=QqreRufrkxM.

1.B.

T(n) <an+ Y T(k;)

1
San-l—chi:an-i-cZki
i i

=an+c(n—1)

<cn assuming a < ¢

Thus, the running time of the above algorithm is O(n), where n is the number of nodes in the
tree.

(70 PTS.) Describe a dynamic program to solve the problem. Your algorithm should be implemented
using explicit memoization, and should not use recursion. Analyze the running time of your algorithm
(you need to provide pseudo-code). What is the running time and space of your algorithm?

Here, assume the input is given in an array Z[1 .. n| of nodes. The first entry (i.e., Z[1]) is the
root. Every node has a field b specifying the bribe, and a field £ specifying the number of children it
has, and an array/list C of the indices of the children nodes. You can assume that for a node Z[i],
all its children are stored in locations in Z with index strictly larger than .

(Again, no need to output the set realizing the solution — just the price of this solution — you
should think about how to print out the optimal solution.)

Solution:

minBribeCost(Z[1..n]):
for i <~ n down to 1 do
if Z[i].£ = 0 then
Z[i].minCost « Z[i].b
else
minChildrenBribe <+ 0
for ¢ in Z[i].C do
minChildrenBribe <— minChildrenBribe + Z[c|.minCost
Z[i]. minCost = min(Z[i].b, minChildrenBribe)
return Z[1].minCost

We can see that the time to calculate the minimum bribe cost for a tree rooted at node v depends
on the number of children of v. Since a child node only contributes a constant amount of time for its
parent node and since there is at most one parent for any given node, we can see that the running
time of the algorithm is O(n).

Since we keep track of a single numerical value for each node in the tree, the space complexity of
this algorithm is O(n).

(100 pTts.) Fishing for staircases.

A DAG is a directed graph with no cycles. Given a DAG G with n vertices and m edges, one can

compute in O(n+m) time an ordering of its vertices vy, . ..vp, such that if there is an edges (v, v;) € E(G),
then i < j. This is known as topological sort (or topological ordering) of G, and you can assume you
are given a black box that can implement this operation in O(n + m) time. A vertex in a DAG is a sink
if it has no outgoing edges.

2.A.

2.B.

2.C.

(25 pTS.) The value of a vertex v in a DAG G, is the length of the longest path in DAG that starts
in v. Describe a linear time algorithm (in the number of edges and vertices of G) that computes for
all the vertices in G their value.

Solution:

Assuming that the input graph is represented by an adjacency list with singly-linked lists indexed
from [1..n], we have:

computeValues(G):

G + topologicalSort(G)

for 7 < 1 ton do
dp[i] + 0

for ¢ <— n down to 1 do
maxPathLen < 0
for each vertex v; in G[i] do

dpli] « max(dpls], 1-+dp[j])
return dp

By performing topological sort on G, we induce a partial ordering on the vertices such that the values
of all out-neighbors of a vertex v can be computed before the value of v itself, which depends on the
values of its out-neighbors.

Using an adjacency list, we can see that each vertex v requires O(deg(v) + 1) time to iterate through
the out-neighbors of v. Furthermore, topologicalSort runs in O(n + m) time. Thus, the total

running time is O(znj (deg(vk) + 1)) +O(m+n) = O(m+n).
k=1

(25 pTS.) Prove that if two vertices u,v € V(G) have the same value (again, G is a DAG), then the
edges (u,v) and (v,u) are not in G.

Solution:
Proof by contradiction

Suppose u, v € V(G) have the same value and there exists an edge between u and v. Since G is a DAG,
either (u,v) or (v,u) is in G but not both. Without loss of generality, suppose we have an edge (u, v)
in G. Let the value of vertex v be z and the value of vertex u be y. Since G is acyclic, we can see that
the longest path starting from v cannot contain u. Thus, y > z + 1 because we can simply include
the edge (u,v) to the longest path from v to get a path of length x + 1 starting from u. However, this
is a contradiction of the assumption that = y. Therefore, we can conclude that the edges (u,v) and
(v,u) are not in G. W

(25 p1s.) Using (B), prove that in any DAG G with n vertices, for any k, either there is a path of
length k, or there is a set X of |n/k| vertices in G that is autonomous; that is, there is no edge
between any pair of vertices of X.

Solution:

If there is no path of length k, then the length of any path in G is at most £k — 1. Furthermore, we
can state that for any vertex v € V(G), the length of the longest path from v is in the range [0,k — 1].
By the result obtained from HW0 Q1A, we can see that there must be at least [n/k]| vertices with

2.D.

longest paths of the same length. Let X be the set of these vertices. By (2B), we can conclude that
there cannot be an edge between any two vertices in X. W

(25 pTs.) Consider a set of P of n points in the plane. The points of P are in general position —
no two points have the same z or y coordinates. Consider a sequence S of points pq,ps,...,pr of P,
where p; = (zi,y:), for i = 1,..., k. The sequence S is staircase, if either

e foralli=1,...,k—1, we have z; < ;41 and y; < y;41, Or

e foralli=1,...,k—1, we have z; < z;4+1 and ¥; > Yi+1.

Prove using (C) that there is always a staircase of length |/n] in P. Describe an algorithm, as fast
as possible, that computes the longest staircase in P.

Solution:

Let two points p; = (z,%),p; = (x;,y;) in P be connected by a (directed) edge (p;,p;) if z; < x;
and y; < y;. We can see that any path in this DAG describes a staircase by the first condition. By
(C), we can see that there is either a path of length |\/n] or a set of autonomous vertices X of size
|v/n] (where k = [/n]). If we have a path of length |\/n], then we are done, since the path denotes
a staircase. Otherwise, we can see that if you order the points in X such that z; < z;4; for all points
p; € Xfori=1,...,[/n], then y; > y;11. This is true because two points p; = (i, %), p; = (z;,¥;),
where z; < z;, in the DAG are connected by an edge (p;, p;j) iff y; < y;. If there does not exist an edge
between p; and p;, then it must be the case that y; > y; (since the points are in general position), in
which case the second case for staircase is satisfied.

Notice that given a set of points sorted by z-values, the longest staircase is given by the longest
increasing subsequence of y-values or the longest decreasing subsequence of y-values, whichever is
greater.

The following algorithm assumes that P is an array of points.

longestStaircase(P):
// sort by increasing x value
P < mergeSortByX(P)
lis, lenl +longestIncreasingY (P)
lds, lenD <longestDecreasingY (P)
return lis if len] > lenD else lds

2.E.

longestIncreasingY (P[1..n]):
dp[i] « 1 for i € [1..n]
prev[i] < 0 for i € [1..n]
for i <~ 2 ton do
maxval < 0
maxind < 0
for j < 1to i do
if P[j].y < P[i].y and dp[j] > maxval then
maxval < dp[j]
prev(i] < j
dp[i] = 1 + maxval
lisIndex « 0
maxLengthSubseq < 0
for 7 < 1 ton do
if dp[i] > maxLengthSubseq then
maxLengthSubseq < dpli]
lisIndex ¢ i
staircase[i| <— 0 for i € [1..maxLengthSubseq]
for ctr + maxLengthSubseq down to 1 do
staircase[ctr] «— prev[lisIndex]
lisindex <« prev/|lisIndex]
return staircase, maxLengthSubseq

longestDecreasingY has an identical structure, except line 7 is changed to: if P[j].y > P[i].y and

dp[j] > maxval

In longestIncreasingY and longestDecreasingY, we need iterate over n? values to fill up our
memo table. To retrieve the actual sequence, we follow O(n) entries in our secondary table prev’.
Thus, both longestIncreasingY and longestDecreasingY have running times of O(n?).

Our algorithm longestStaircase requires O(nlogn) time to sort P, O(n?) time to compute the
longest increasing and decreasing y-subsequences, and O(1) time to return the maximum length
subsequence between the two. Therefore, our algorithm runs in O(n?) time.

(Harder + not for submission.) Using the algorithm of (D), describe a polynomial time algorithm
that decomposes P into a set of O(y/n) disjoint staircases. Prove the correctness of your algorithm.

(100 pTs.) Independence in orderly graphs.

For a graph G with n vertices, assigning each vertex of G a unique number in {1,...,n} is a numbering

of its vertices.

A graph G with a numbering V(G) = {1,...,n} is k-orderly, if for every edge ij € E(G), we have that
—k < i—j < k (note, that it is not true that if |i — j| < k then ij must be an edge in the graph!). A
different numbering of the vertices of G might change the value of k£ for which G is k-orderly. Here are a

few examples of a 3-orderly graph:

3.A.

(20 pTs.) For any given value of k, show an example of a graph that is not k-orderly for any
numbering of its vertices. Prove the correctness of your example. For credit your graph should have

a minimal number of edges (as a function of k).

3.B.

Solution:

Consider a graph G’ with 2k + 2 vertices, where one vertex v is connected by an edge to each of
the other 2k + 1 vertices. This graph has 2k + 1 edges.

Let p be the numbering of vertex v. Then there are two cases:

e Suppose p > k + 1. Then v is connected to a vertex numbered 1. Since p — 1 > k, G’ is not
k-orderly.

e Suppose p < k+ 1. Then v is connected to a vertex numbered 2k + 2. Since p — (2k +2) <
k+1—(2k+2)=—k—1, G is not k-orderly.

We have shown in both cases that G’ cannot be k-orderly for any arbitrary k.

(80 pTs.) Given a k-orderly graph G (here you are given the numbering of the vertices, and the
value k [or, you can compute it directly from the numbering]), consider the problem of computing
the largest independent set of G. As a reminder, a set of vertices X C V(G) is independent, if no
pair of vertices of X are connected by an edge of G.

Provide an algorithm, as fast as possible, for computing the size of the largest independent set in
G. What is the dependency of the running time of your algorithm on the parameter k?

In particular, for credit, your solution for this problem should have polynomial time for k£ which
is a constant. For full credit, the running time of your algorithm should be O(f(k)n), where f(k) is
some (potentially large) function of k.

For this question you can use implicit memoization.

Hint: (A) Think about the vertices as ordered from left to right as above. Start with £ = 1.
Then, solve the problem for k£ = 2,3,4,.... Hopefully, by the time you hit £ = 5 you would be able to
describe an algorithm for the general case. Think about defining a recursive function for this problem
that has ~ k parameters.

Solution:

int getLookup#(start, bucketContents[1..n]){
int lookup#
for(int element=start, element<start+k+1l; element++){

}

if (bucketContents[i] == true)
lookup# += 1 << element - start

return lookup#

// bucketContents is a 1 x n array of booleans
int R(graph[1..N]J[1..N], int start, bucketContents[1..N]){

// If there are no more elements to consider.

if start

== N - K :
return 0O

// Look for memoized answer
memoized = memoTable[start] [getLookup#(start, bucketContents)]
if memoized != -1 :

return memoized

// Look for memoized answer

// Shift window

newElement = start+k+1
bucketContents[start] = false
// Shift window

// Consider not adding new element to set
dont_include_new = R(graph, start+l, bucketContents)

independent = true
for(int i = start+1l; i < start+K+1; i++){

}

// If the new element is connected to a member of the bucket
// then the bucket Contents are an independent set.
if i<1:

continue
if 1 <= newElement <= n and graph[newElement] [i] == true:
independent = false
break

include_new = 0
if independent == true :

// Consider when new element is added to the bucket
bucketContents[newElement] = true
include_new = 1 + R(graph, start+l, bucketContents)
bucketContents [newElement] = false

// Record the answer in the memo table.

memoTable [start] [getLookup#(start, bucketContents)]
= max(include_new, dont_include_new)
return memoTable[start] [getLookup#(start, bucketContents)]

}

int findMaxIndependentSet(graph[1..n]) {
for (int i = 1; i <= N; i++)
bucketContents[i] = false
return R(graph, -K, bucketContents)

Our algorithm is an optimization on the brute force O(2") algorithm which generates the power
set of the graph and does a linear search through the power set to find the largest independent set.
Le. checking every subset for the largest independent set.

The optimization we found was that given a window over a range of K nodes in the graph, if from this
window we make a bucket filled with independent elements, a new element from outside the window,
independent from the elements of the bucket, will be independent from everything before the window.

Using this fact, we created a symmetrical subproblems that consist of a window of size K + 1,
an a starting node, followed by some other elements.

From two of these subproblems, one where we slide the window and add the next element to our
bucket, and one where we slide the window and don’t add the next element to the bucket, we can
solve the original problem by taking the maximum value of the subproblem.

The coordinates of subproblems were the elements in the bucket, of which there could only be 2(K+1),
and the starting point of the window, of which there were n.

To check whether the next element could be added to the bucket, we had to know whether it was
independent from the elements in the bucket. Therefore we checked the new element’s adjacency
matrix (we assume the graph is given to us as an adjacency matrix) for any of the elements in the

bucket. This takes K lookups.

The base case is when we run out of new elements to add.

The starting case is where we invent imaginary node elements, none of which are in the bucket,
and the first new node is 1.

That is how our algorithm works. Based on the formula for the runtime of a memoized algorithm
based on the recurrence,

the algorithm runs in O(f(K)n) = O(K - 2K - n).

because there are two memoization parameters, one bounded by 2X the other by n, and the re-
currence body takes O(K) to run.

CS 374 HW2

Charles Swarts

September 2017

1
A

Question

All strings over {a, b, ¢} in which every nonempty maximal substring of consecutive as is of even length.

Answer

B

Question

Y*aXr bt X

Answer

C
Question

(a(a+b)*a+b(b+ c)*b+ c(c+ a)*c)*

Answer

D

Question

(((aa + aab)*(bab + bb)* + c) b) ' +bb

Answer

E

Question

All strings in 1* of length that is divisible by at least one of the following numbers 2,3,5,7. For full credit
your automata should have less than (say) 20 states.

Answer

F

Question

All strings in a* of length that is NOT divisible by any of the following numbers 2, 3, 5, 7.

Answer

M= (Q,%,6,s,A)

5:Qx% - PQ)
ACQ

Q={g|ieN, 0<i<(2x3%5x7)}
s = {1}
0(qi, @) = {q(i+1)%(2+3%5%7) }

$=4qo

A={q;|2tior3fior5fior7{i}

2
A

Question

Consider the language L<; = {z € {0,1}* | 3y € L s.t. dg(z,y) < 1}. Describe in words what the
language L<; is.

Answer

L<, is every string that has a Hammind Distance of 1 or fewer from a string in L.

B

Question
Consider the following DFA M.

What is its language L = L(M)?

Answer
((1+01)*001)" ((1+01)*000) 0*1(0+ 1)*

C

Question

By modifying the given DFA give above, describe an NFA that that accepts the language L < 1. Explain
your construction.

Answer

This machine has M and a copy of M, M’. For every transition in M which goes from (go,a) — ¢1 there
is a also a transition in my machine that goes from (go,a’) — ¢|. Thus this machine accepts any string
in L, and accepts/tolerates one difference anywhere in the string from a string in L. Thus it tolerates
any string with Hamming Distance 1 or 0 from a string in L.

D

Question

More generally, demonstrate that if a language L C {0,1}* is regular, then L < 1 is a regular language
(for simplicity, you can assume € ¢ L). Specifically, consider a DFA for L, and describe in detail how to
modify it to an NFA for L < 1. (The description of the NFA does not have to be formal here.) Explain
why the constructed NFA accept the desired language.

Answer

Since L is a regular language, it can be converted to an equivalent DFA M. We construct an NFA which
has M and a copy of M, M’'. For every transition in M which goes from (go,a) — g1 there is a also
a transition in our constructed NFA that goes from (go,a’) — {¢1}’. Our constructed machine accepts
any string in L, and accepts/tolerates one difference anywhere in the string from a string in L. Thus it
tolerates any string with Hamming Distance 1 or 0 from a string in L. So the machine accepts any string
in L<;. Since we can create a NFA for L<;, then that language is regular by the fact that an NFA can be
converted into a regular expression, and so we can convert our constructed NFA into a regular expression
which accepts L<i. By definition of regular expression, the language it accepts is regular.

E

Question

Prove, that for any constant k, the language L<y is regular. Your proof has to be formal and provide all
necessary details. (Le., you need to provide an explicit formal description of the resulting NFA for the
new language, and prove that the NFA accepts the language L<y).

Answer

Assume we have a regular language L and a natural number k. Where L is defined by the prompt.
Also, since L C {0,1}*, then L is a binary language. So, let a’ =1ifa=0and o’ =1if a =0.

Since L is regular, we know there is a DFA, M = (Q, X, §, s, A) which accepts L.
Can construct an NFA N, defined as follows.

N:(QszyéstNyAN)
on 1 QN X E = P(Qn)

Qv ={(¢;1)|geQandieNst. 0<i<k}
sn = (s,0)
Ay ={(a,i) |a€ Aandi e Nst. 0<i <k}

{(6(p,a),1), (8(p,a’),i+ 1)} ifg=(p,i)and i<k
{(6(p,a),i)} if g=(p,i) and i =k

Now we prove that L<j is accepted by the NFA and only L<.

5N(qaa') = {

Lemma 1:
|z| <k — Pz

We know if the Hamming Distance between two strings is greater than the length of one of those two
strings, then one of those two strings doesn’t exist, and is therefore is not in our language. O

Lemma 2: if v is a substring of a string in L, then (6*(g,v),%) € 05 ((g,2),v).

In any case of dn((g,1%),a), (6(g,a),1) is in the output set. So d3((s,0),v) = dn(zo € on(z1 €
ON(-r); Vjp|=1)- So (6*(s,v),7) € 0*((s,1),v). O
By Lemma 1, we know that |z| > k, and because of definition of Hamming Distance, |2| = |y|. So

we can break y and z into
du(y,2)—1
y= coir;%at Yii |Ydy (y,2)
dy (y,2)—1 ’
7= c%ri%at Yil; | Ydy (y,2)

Where each of the y; are the equally positioned substrings where y and z match, and each a; is a “bit”
where they differ.

From our definition of jy we get that, for i < k

(6(‘1a a’)a ’L) € 6N((qa i)a a‘)

and
(6(g,a),i+1) € on((g,7),a)

So starting from the same state, oposite input characters to d5 produce outputs which contain N states
with the same internal M state.

Lemma 2 also tells us that starting from two NN states with the same internal M state, evaluating
63 on the same string will produce an outputs which contain an N state with the same internal M state
and the same integer they started out with.

So, from some starting state, evaluating dn on strings y;a; and y;a} looks like
(6((11’ yzaz)a 0) € 6N((qza O)a yzaz)

(6(gi, yias), i + 1) € on((g:,7), via;)

Which means after evalutaing all the y;a; pairs of y and z, and then evaluating the suffix ydp(z,y)),
which by Lemma 2 will just advance the internal M state of each of our outputs, we get

(a € 4,0) = (6"(s,),0) € 65 ((s,0),)
(a‘ € Aa dH(ya Z)) = ((5* (S, y)a dH(ya Z)) € 67\1((sa O)a y)
Since 0 < dp(y, z) < k, both of these are valid states, and also Accepting states, so the NFA accepts L<

It also rejects strings not in L<y.

Proof by contradiction. This means we assume the NFA accepts a string, z, which has a Hamming
Distance k + 1 from every string of length |z| in L. For this to be the case, all output states of 6} (sn, 2)
must have their internal integer be > k, otherwise z would have had a Hamming Distance less than k+1
from some equal length string in L. But d3(sn,2) cannot have an internal integer > k + 1 because by
definition of 4, if the internal count of an NN state is k, then the option to deviate from any string in
L is taken away because it can only make valid moves and keep the internal count at k. So this is a
contradiction to our assumption that z has a Hamming Distance of k£ + 1 from some string in L and still
exists. So it must not exists, and therefore our NFA doesn’t accept it. O

Since we can create a NFA for L<j, then that language is regular by the fact that an NFA can be
converted into a regular expression, and so we can convert our constructed NFA into a regular expression
which accepts L<y. By definition of regular expression, the language it accepts is regular. |

3
A

Question
Let L be the language of the following DFA M. What is L?

e

Answer
((a+b+c)(a+b+c))*

B

Question

Working directly on the DFA M from (A) construct an NFA for the language f(L). Here f(L) = {f(w) |
w € L} is the code language. Where f is code from the above example.

Answer

10

C

Question

Let L C ¥* be am arbitrary regular language. Prove that the encoded language f(L) = {f(w) | w € L}
is regular. Specifically, given a DFA M = (Q, %, 4, s, A) for L, describe how to build an NFA M’ for f(L).
Give an upper bound on the number of states of M’. (Le., You need to prove the correctness of your
construction — that the language of the constructed NFA is indeed the desired language f(L).) (Rubric:
Half the credit is for a correct construction, and the other half is for a correct proof of correctness.)

Answer

let us create a new function g : ¥ x N — 0,1 which takes a symbol and a number and returns the
numberth bit of the encoding of the symbol. e.g. g(a,1) =0 an g(a,4) =1

let us create a new function A : ¥ — N which takes a symbol and returns the length of the encod-
ing.

M=(Q,%,4,s,A)
MI — (Q/’ 2/’ 6/,8/,14/)

Q' ={(g,0,d,i) | g€ Q,0 € £,d=6(¢q,0),i € Ns.t. 1 <i<h(o)}UQ
This would put the upper bound of the number of states in M" at |Q| + |Q| * D_ 5 (o)

¥ ={0,1}
s=s
A=A

{(g,0,d,1) |c € 2,d=6(q,0)} ifp=qgqandgeQanda=c¢
8 (p,a) = < {d} if p=(g,0,d,i) and a = g(o, h(0)) and i = h(o)
{(g,0,d,i+ 1)} if p=(g,0,d,i) and a = g(o, 1)
Proof that this is f(L). If we want to prove this is f(L), all we have to prove is that starting from any
state in @, (since both machines share @ as a subset of their states) that reading the code for a symbol,
o, into M’ yields the same resulting state as reading o into M.

Let us pick two arbitrary state g, p, in @ which are connected by a symbol o € X, such that §(g,0) = p.
Now we show §"*(q, f(0)) = p.

8" (q, f(o)) =48"(6"(8'(...6"(q, g9(0,1))...), g(o, h(0)))
Which, with the repeated application of §’ becomes

&' ((g,0,p,h(0)),9(o, h(0)))
= {p}

a singleton set, so essentially just p. O

Now, because we have shown that there exists an NFA for f(L), then we know a regular expression
exists. Since a regular expression exists for f(L), f(L) is regular by definition of regular expression. W

11

D

Question

Let L C {0,1} be a regular language. Consider the decoded language L(f) = {w € £* | f(w) € L}.
Prove that L(f) is a regular language. As above, given a DFA M for L, describe how to construct an
NFA for L(f) . (Rubric: Half the credit is for a correct construction, and the other half is for a correct
proof of correctness.)

Answer
M= (Q,%,6,s,A)
We construct an NFA M’ to represent L(f)
M, = (Q’ 2,’ 6/’ s’ A)
F:QxX -2
ACQ
¥ = an alphabet for which f(o € X) is defined

§'(g,a) ={p|p=10"(q,f(a))}

Proof of correctness. All we have to do to prove this NFA, M’, accepts L(f) is to show that starting
from any state, since both machines share the same state, that for some symbol ¢ € ¥ reading in f(o)
in M lands at the same state as reading o in M’.

(g, f(a)) = (g,)

6" (g, f(a)) ={p|p=10"(q, f(a))}
6*(q, f(a)) = {07 (g, f(a))}

But since § is from a DFA, 6*(q, f(o)) only has one answer, so the set on the right is a singleton set, and
essentially the equality holds. O

Now, because we have shown that there exists an NFA for f(L), then we know a regular expression
exists. Since a regular expression exists for f(L), f(L) is regular by definition of regular expression. W

12

CS 374 HW3

Charles Swarts

September 2017

1
A

Question

Prove that the following language is not regular by providing a fooling set. You need to prove an infinite
fooling set and also prove that it is a valid fooling set. The language is

L= {Okwﬁ;lk|0§k§3,w€ {0,1}+}

Answer

To prove F is a fooling set, we want to show
Vr,y € F3zsuch that xzz€ Ldzz € L
Here is my fooling set:
F={0"|1<i}
Proof it is valid. Suppose we take two elements of F', x = 0%, and y = 07. Then if zz € L
zz = 0'wwl?
yz = 0 twwl®

But as you can see, y is not in L, because it does not meet the definition. Therefore my set is a fooling
set. |

B

Question

Same as (A) for the following language. Recall that a run in a string is a maximal non- empty substring
of identical symbols. Let L be the set of all strings in 0,1 that do not contain any two distinct runs of Os
of equal length. As an examples, L:

Answer

Here is my fooling set:
F =01

Proof it is valid. Consider two elements from the fooling set, = 0 and y = 07¢. Then we let z = 0%, so
z =010
y =07"10°

Soy € L and z ¢ L, so F is a fooling set.

C

Question

Suppose you are given two languages L, L’ where L is not regular, L’ is regular, and L’ is regular. Prove
that LU L' is not regular. Also, provide a counter-example for the following claim (it can be interpreted
as an “inverse” of the above): Claim: Consider two languages L and L’. If L is not regular, L' is regular,
and L U L' is regular, then L N L' is regular.

Answer

From Set Theory we know:
AN(B\(ANB) =0

And
ANC=0—AuC\C=A

So we take (B \ (AN B)) to be C
(Au(B\(AnB)))\(B\(AmB)) -y

We also know
AU(B\(ANB))=AUB

So an equivalent way to write this
(AuB\(ANBY)\(B\(AnB)) =4

Is this
(AUB) \(B\(ANB)) =4
If we plug in L for A and L’ for B, we get
(LUL)Y\(L\(LNL))=L
Regular languages are closed under all of the operations on the left. Sois LUL’, L', and LN L' are regular
then L must be regular. But L is not regular, and L', and LNL’ are regular, so LUL’ must not be regular.C]

To counter the claim, consider two Languages L is nonregular and 0,1*. L UO0,1* = 0,1*. So their
union is regular, but LN0,1* = L. So their intersection is irregular. Thus there is a case where the claim
is false, so the claim is false. O

D

Question

Same as (A) for L = {0491 | n > 3} | where lgn = log,(n).

Answer
Lemmal: There are infinite unique natural number outputs to
f(n)=[(n+1)-lg(n+1)] — [n-lg(n)] whereneN

Proof:

We consider the real function:
g(z)=(z+1) - lg(z+1) —z-lg(z)

g is unbounded from above and monotone over the real numbers > 1. g¢(1) = 2 Therefore for every
natural number > 2 is an output of the function.

Now if you consider a solution to g(z) = n and a value g([z]).

g(z+1) > g([z]) > g(z) since g is monotone

9([2) < g(@) + (9@ +1) - g(2))

And we know
g(@+1) - g(@) = (& +lg(z+2) - (@ + Diglz+1) - (e + Dig(z +1) - alg(x))

= (z+2)lg(z +2) + zlg(z) — 2(z)lg(z)

And we know

: (x+2)lg(x + 2) + zlg(x) — 2(x)lg(z) = <log(z +2) +log(z) — 2log(z + 1))/log(2)

(log(a: + 2) + log(z) — 2log(zx + 1)) /log(2) <0

log(z + 2) + log(z) — 2log(x +1) < 0
log((z +2)(z)) < log((z +1)?)
log(z? + 2z) < log(z* + 2z + 1)

em2+22 < 6(12+22+1)

2 2
& 2z < e(z +2z) | e

1<e

So the marginal gain of g(z + 1) — g(z) is smaller as = becomes larger. The marginal gain at 3 is
9(3+1) —g(3) < .5. So g([z]) is within .5 of g(z)

Now we consider a function h(z) = [(z + 1) - lg(x + 1)] — [z - lg(z)]. Which is the same as g(z),
except that it has discritized the two components. There are 4 cases when we consider h(z) against the
equivalent input to g(z). Both of the discrete components round up, and h(z) is within 1 of g(z), neither
round up and g(z) = h(z), or one of them round up and the other doesn’t and the net affect is within 1

of g(z).

So g(z) is at most .5 away from g([z]), and g([z]) is at most .5 away from h([z]), so f(z) is within 1.5
of h([z]), but because g(z) and h([z]) produce natural number, they are within 1 of each other.

Since every natural number is an output of g(z), and h([z]), is at most 1 away from g(z), then h([z])
will produce at least every third natural number. Since the natural numbers are infinite, there are infinite
and unique natural number outputs of h([z]). Since f(n) and h([z]) are equivalent if n = [z] and they
are both over the same range, then f(n) can produce infinite and unique natural number outputs. 0.

f(n) =[(n+1)-lg(n+1)] - [n-lg(n)]

We choose a fooling set
F = {091 | k n e Nsuch that f(n) =k, and n is the lowest such number

where any element with a lower n has a lower k}

We know the set is infinite because by Lemma 1, there are infinite natural number outputs of f(n).

note: In lemma 1, we also proved f(n) deviates no more than 1 from g(z), So as n gets higher, f(n)
generally gets higher, so the added stipulation that lower values of n match lower values of f(n) will not
make the set finite.

Proof of validity:
zr,y € F

Without loss of generality, we say z is shorter. Then we take z = 0%+ where k, is k from the definition

of an element in F', but for z.
Tz = Ornzlg("acﬂ Okz

yz = Ofnylg("y)]okz
since kg = [(ng + 1) - lg(ng + 1)] — [ng - lg(ng)], we substitute
rz = 0ln=lg(nz)1gl(ne+1)-l9(ne+1)] - [nz-lg(nz)]

Yz = O["ylg(ny)] Ol—(nx +1)-lg(nz+1)]—[nz-lg(ns)]

So

2z = Of(a+1) dg(na+1)]

yz = Ornylg(ny)] Or("av +1)-lg(nz+1)]—[nz-lg(ns)]

As you can see, zz is in the language.

We now explain why yz is not. It is because k is essentially the minimum number of zeros you have
to add to get another string in L. We said y is longer than z, so it must have a greater n, and thus a
greater k by definition. So when we add &, Os to y, it is enough to make y no longer in L but not enough
to put it back in L. Thus y ¢ L and the fooling set is valid and infinite and the language is not regular.
[|

2

Describe a context free grammar for the following languages. Clearly explain how they work and the role
of each non-terminal. Unclear grammars will receive little to no credit.

A

Question
{a't/ckdlet | i, j k,l,t >0and i+ j+k+ 1=t}

Answer

For this question, I feel the shorthand is appropriate.

S —aSe|B|e
B —bBe|C e
C—cCel|D|e
D —dDe| €

This one works by allowing epsilon, because all the i-t could be 0. It runs on the principle that every
time you add an a-d, you add an e. This keeps i + j + k + 1 = ¢. Then I add all the a’s before the b’s
and b’s before ¢’s and c’s before d’s as prefixes because that ensures the correct ordering of the symbols.
Each non terminal is a cascade which adds the next character in the sequence.

B

Question

L ={we {0,1}* | there is a prefix z of w s.t.#1(z) > #o(z)}

Answer

I also feel for this question, the shorthand is appropriate.

S —» PW

P — PP|01P|10P | OP1|1P0| PO1| P10 | E
E—1E|1

W — 1W | 0W | e

This one works by immediately splitting the string into P for Prefix, and W for Whatever. The prefix
works on the principle of making the string you want to avoid, and then twisting it at the end. It does
this by adding an equal number of Os and 1s each time, and in any configuration, then calling E for end,
which adds 1s which make the prefix have more 1s than 0s, thus satisfying the condition. I also included
PP in P so that I could call E in multiple places. W is whatever, because it contains any combination of
Os and 1s and epsilon.

3

L={0'192% | j =i+ k}

A

Question

Prove that L is context free by describing a grammar for L.

Answer

I feel the shorthand is appropriate here.

S -BE
B —0B1 | €
E —1E2 | €

This grammar works by immediately splitting the string into B for Beginning and E for End. The
beginning and end add a 1 every time they add a 0 or 2, because that keeps j = 7 + k. The beginning
deposits 0 followed by recurse followed by 1 to keep the order. Same for end but with 1 and 2.

B

Question

Prove that your grammar is correct.

Answer

If I can show that B ~»* 0?1°Vi € N and only that and E ~~* 0¥1*Vi € N and only that, then, because my
start immediately divides the string into B and E, I will have shown L = L(G) where G is given in part A.

proof by induction on n, the number of times we derive from B. That B only derives all terminal
strings of the form 0¢1°%.

base case, n =1

B~ e

B ~ 0B1

€is in = 0219 = 0"~ 11"~1 So this case is good. Our non-terminal string is 0" B1™.

inductive hypothesis: the terminal strings of B ~»"=[1:"] are of the form 0»~11"~1, and the
nonterminal strings are in the form 0" B1™.

inductive step: deriving B n + 1 times.

By the inductive hypothesis, the only non-terminal string of B ~% is 0" B1"™.

0"B1™ ~~» 0™1™ Which is a terminal string in the form specified by the inductive hypothesis, and the only
non-terminal string is

0"B1™ ~» 0"*1 B1™*! Which is in the form specified by the inductive hypothesis.

Thus, B ~* {0°1'} Vi € N by a symmetric argument, E ~* {1'2°} Vi € N, so L = L(G) [|

CS374 HWS

Charles Swarts

November 2017

1

Question

(This question was inspired by the game Open Flood [available as an app on android].) You are given
a directed graph G with n vertices and m edges (here m > n). Every edge e € E(G) has a color c(e)
associated with it. The colors are taken from a set C = {1, ...,£} (assume £ < n), and every color ¢ € C,
has price p(c) > 0.

Given a start vertex so = s, and a sequence of II = (cy,...,¢;) of colors, a compliant walk, at the
ith time, either stays where it is (i.e., s; = s;1), or alternatively travels a sequence of edges of color
¢; that starts at s;. Formally, if there is a path o = (u1,u2), (u2,u3), ..., (ur1,ur) € E(G), such that
c(uj,uj41) = ¢, for all j, and u; = s;, then one can set s;;1 = u,. The price of II is p(IT) = Zézl p(ci).

Describe an algorithm, as fast as possible, that computes the cheapest sequence of colors for which
there is a compliant walk in G from a vertex s to a vertex t. For full credit, your algorithm should run in
O(mlogm) time (be suspicious if you get faster running time). Correct solutions providing polynomial
running time would get 50% of the points.

Answer

First we apply a transformation, createTransformedGraph() to the graph which creates a new graph.
Then we apply Dijkstra. Dijkstra returns a previous array. We then run the previous through a one
pass algorthm which converts that to II.

To make this easier the following abstractions are used.

1: Graph:

2: dict<(label, color),edgeList> nodes|]
3:

4: Edge:

5: int color

6: int cost

T (label,color) start
8: (label,color) end
9:

10: Node

11: int label

12: int color

13: Edge edgeList[]

createTransformed Graph(Graph oldGraph):
newGraph = new Graph()

1:

2

3

4 for each node in oldGraph.nodes:

5: hub := Node(node.label,-1,]])

6: newGraph.nodes[(node.label,-1)|=hub

7 unique_colors := dict() //dictionary has O(n) to loop over all elements
8: //and O(1) inserts and starts out with all entries as false.
g.

10: for edge in node.edgeList:

11: unique_colors[edge.color]=true:

12: for color in unique_colors:

13: platform node := Node(node.label,node.color,[])

14: newGraph.nodes[(node.label,node.color)].edgeList.add(platform node)

15: to-hub := Edge(node.color, node.color.cost, (platform_node.label,platform node.color),(hub.label,hub.color))
16: from_hub := Edge(node.color, 0, (hub.label,hub.color), (platform node.label,platform_node.color))
17: platform node.edgeList.add(to_hub)

18: hub.edgeList.add (to-hub)

19: platform node.edgeList.add(from_hub)

20: hub.edgeList.add (from_hub)

21:

22:

23: for each node in oldGraph.nodes:

24: for edge in node.edgeList:

25: newEdge = Edge(edge.color,0,(edge.start.label,edge.color),(edge.end.label,edge.color))

26: newGraph.nodes[node.label,edge.color].edgeList.add (newEdge)

27:

Basically what this does is what the professor said. It makes every node into a subway station. Each
of the colors represent a different subway train line. If a line goes to a particular station, then that station
needs to have a platform for that line, and similarly if a train line of a certain color leaves the station, then
the station needs a platform for that line. Thus we create a platform node for each unique train line in-
gressing or egressing. Then if you want to transfer lines, you have to pay a transfer fee which is the price of

the color of the line you are transfering to. This price is paid at the hub node which connects all platforms
at a central location thus decreasing complexity. And except for this transfer fee, riding the subway if free.

More visually it makes arrangments on the left look like arrangements on the right.

0 0

Yy b

Now we run through Dijkstra with the newGraph, the starting point (start,-1) with the ending point
(end, -1) and this will be equivalent the cheapest subway path from the hub of the start to the hub of
the end.

Dijkstra will return an array of previous which says which is an array of shortest path predecessor
for each node. We take that and run it through

: getII(previous|],start,end,num_V color):
if start == end:
return ||
current := end
ITlength := num_V
IT := array[II_length)]
II[num_V] := color[previous|current]|[current]
while current != start:
if color[previous|current]][current]!=II[num_V]:
num_V := num_V-1
II[num_V] := color[previous|current]|[current]
current := previous|current]
return II[num_V:II_length]

Analysis: The transformation essentially looks at every edge twice and can add up to 4 internal edges
for each edge. Otherwise the edges in the second outer loop are just the old edges shifted. Thus the new
number of edges shared the same complexity with the old number of edges. However, the transformation
has the potential to add a node for every edge, so the new number of nodes shared complexity with the
number of edges. Thus when Dijkstra is run with a its running time of O(E+V log(V)) then V E and
E=m, so this becomes O(m+m log(m)) = O(m log(m)).

The transformation looks through every edge and does constant work for each, so it runs in O(m). And
get_II runs in O(m) because it just backtracks through a 1 dimensional array of the previous node for
each node, of which there are now m, doing constant time lookups.

Thus the full process takes O(m+m-+m log(m)) = O(m log(m))

CS 411 HW1

Charles Swarts
swarts2@illinois.edu

Febuary 2017

1 Q1
1.1 1

1. Consider the relation Person (Name, SSN, Age, Address, Gender). How many keys does the relation
Person have? How did you arrive at your answer?

The Person relation will have between 1 and 5 keys, but most likely has 2. SSN is for sure a key
because it is underlined, indicating it was created specifically to be a key. The other attributes could
each be keys, but in the real world would not be. Since it is unlikely to find two Persons who share the
same Name, Age, Address, and Gender, these four attributes could be used together as a key for most
circumstances.

1.2 2

2. All relationships involving a weak entity set can be ignored while translating an ER diagram to a
relational model. Justify or prove otherwise.

University Team
Rival
University Team

Rival is a relationship involving a weak entity set. When it is converted to the relational model, since
it contains information that is not a part of either Team, it cannot be ignored.

1.3 3

3. The expressiveness of ER models would reduce if we do not allow relationships to have attributes.
Justify or prove otherwise.

The technical expressiveness of the ER model would not be affected by not allowing relationships to
have attributes. This is because we can wrap any attributes into an entity and make that "details entity"
as part of the relation. This works for any number of attributes.

This:

Product Consumer

Is equal to this:

Buys Details

Product Consumer

14 4

4. It is possible to transform a multiway relationship to multiple binary relationships without using weak
entity sets. Justify or prove otherwise.

Yes it’s absolutely possible. All we need to do is give the purchase details an ID.
We can transform this:

PurchaselD

Product Consumer

Salesman

Into this:

PurchaselD ProductOf Product

Purchase SalemanOf Salesman

1.5

O Consumer

5

5. The reason why we prefer to combine the relation corresponding to an entity set A, with the relation
corresponding to a relationship B—where B is a many-one relationship from A to another entity set—is
because we want to improve the efficiency of queries involving A.

Doing it this way definitely saves space. It would also improve the efficiency of most queries involving A
because the non-key information of A will be available in the singleton relation.

2 Q2

Consider the following information about a database of a university.

Departments have a department number, department name, and many research areas.
Professors have an SSN, a name, an age, a rank and a main research area.

Projects have a project number, a sponsor name, a starting date, an ending date and a budget.
Graduate students have an SSN, a name, and an age. They major in a single depart- ment.

Graduate students can either be an MS or a PhD. PhD students need to determine their special-
ity /main research area.

All PhD students have a professor as an advisor.

Each project is managed by one professor.

Each project is worked on by one or more professors, and one or more graduate stu- dents.
Graduate students can work on multiple projects.

Every department has a head, who is a Professor. 2

Professors can work in one or more departments. For each department they work in, there is an
associated time percentage.

Graduate students have one major department in which they are working towards their degree

Each graduate student has another senior graduate student as a mentor.

Design and draw an ER diagram that captures the aforementioned information. Indicate the key of
each entity, as well as the multiplicity of your relationships. You are free to use annotation tools such as
Mac Preview or Microsoft PowerPoint to draw the ER diagrams. Please do not include scanned pictures.
You may want to check out draw.io. Note: state your assumptions clearly. Since there are many correct
answers, your ER diagram will be evaluated considering your assumptions.

Project Number Budget Sponsor Name Starting Date
Dept Number Research Area Ending Date
Department Researches Research Area Entity Project

Time Percentage

Manages

MS Graduate Student Specialty
Professor
Advises
4 o PhD Graduate
eer Advi Graduate Student Student
Age
Age

I assumed that numeric attributes were made to be keys.

I assumed that Research Area’s are distinguishable.

I assumed Graduate Students aren’t Graduate Students unless they have a department, that
Projects aren’t Projects unless they have a professor managing them etc. and so I used the more
rigid "exactly one" relationship multiplicity indicator to convey rigid academic bureaucracy.

I assumed that while each graduate student has an adviser, that did not preclude a graduate student
advising many other graduate students.

I assumed that professors can work on more than one project.

3 Q3
3.1 1

1. Convert the ER model from the previous question to a relational model.
Here are the schemas of my Relational model:
Department(Dept Number, Dept Name, Heading Professor)
Department-Research(Dept Number, Research Area)
Project(ProjectNumber, Budget, Sponsor, Name, Starting Date, Ending Date, Managing Professor)
Professor(SSN, Age, Name, Rank, Research Area)
Graduate-Student-MS(SSN, Age, Name, Major Dept, Peer Adviser)
Graduate-Student-PhD(SSN, Age, Name, Major Dept, Peer Adviser, Specialty, Faculty Adviser)

Works On(Project Number, Participant SSN)

WorksIn(Dept Number, Professor SSN, TimePercentage)

3.2 2

2. Which approach did you use to convert the subclass entity set? Show us alternative schema designs.

I used the Object-Oriented approach. I split Graduate Student into two categories: Graduate-Student-
MS and Graduate-Student-PhD.

Alternative Schemas for this would have been:

NULL-Values approach:
(assumes you can only either be a MS or PhD student)

Graduate-Student(SSN, Age, Name, Major Dept, Peer Adviser, Specialty, Faculty Adviser, isPhd)
Or
ER approach:

Graduate-Student(SSN, Age, Name, Major Dept, Peer Adviser, isPhd)
PhD-Extras(SSN, Specialty, Faculty Adviser)

3.3 3

3. Compare between all the designs you came up with in part 2. Talk about scenarios when each alter-
native would be a better choice in comparison to the rest.

The of the three approaches, the object oriented approach will do best on most searches because it
pre-splits MS and PhD students into different groups, and both groups contain all information about the
student.

A query where OO would beat the other two approaches is "find all PhD students who study nano-foo-
bars and are age 26". Because the information would be in the same table, unlike the ER approach, and

would have prefiltered the PhD students, unlike the Null values approach.

A query where the null valued approach may be best would be "find the peer adviser for each student
and the faculty adviser for each PhD student." Because all the information would be in the same table
instead of in two tables like for the other two approaches.

A query where the ER approach may be best would "Find all Phd faculty advisors" because it would
be in a table with less data compared to the other two approaches.

CS 425 HW4

Charles Swarts

May 2017

1 RPC/RMI

Experiment with an RPC compiler. We recommend using Apache Thrift, but you can also use, e.g.,
rpcgen or other RPC compiler. Using the interface definition language, define an interface for a key-value
store supporting Put, Get, and Delete operations. Use the compiler to generate the stub and skeleton
implementations of the protocol.

Include with your submission a printout of your interface definition, as well as one page each from the
generated skeleton and stub files.

2 Two-phase Locking

a

Consider the following transaction. Show where the following happens:

Read lock is acquired (R)

Write lock is acquired (W)

Read lock is upgraded to write lock (R—W)
e Lock is released (U)

balance = A (R on A)

balance += B (R on B)

balance += C (R on C)

A-=7R->WonA)

D = balance - 7(W on D; U on A,B,C,D)

balance here is a local variable; A, B, C, D are objects that are being read/updated by the transaction

b
Is the following interleaving of two transactions serially equivalent? Why or why not?
T1 T2
bl=A
b2 =B
b2 +=C
A =Db2
D=10
bl +=D
E =bl

b1l and b2 are variables local to the transaction.
No they are not serially equivalent because if start with the values A—0;B—0;C—0;D—0;E—0 and
go through T1 first then T2, we have E=0 at the end, but if we go through with the proposed ordering,

we get E=10. Therefore they are not serially equivalent, because this order does not produce the same
results as serial ordering.

C

Consider the following two transactions:

T1:

bl = A
bl += B
D = bl
C =bl
T2:

b2 = B
b2 += C
D = b2

Show an interleaving that is impossible with two-phase locking when only exclusive (write) locks are used,
but is possible when both shared (read) and exclusive locks are used.

T1 T2
bl=A
b2 =B
bl+=B
D=bl
C=bl
b2+=C
D=b2

d

Given the two above transactions, show an interleaving that results in a deadlock.

T1 T2
bl=A

b2 =B
bl+=B
D=bl

b2+=C
C=bl

D=b2

e

(5 points (bonus)) Show an interleaving that is impossible with two-phase locking when shared and ex-
clusive locks are used, but is serially equivalent.

T1 | T2
X=20
Y=20
X=20
Y=20

3 Distributed File Systems

In the Vanilla DFS we talked about during class, you will notice that there is no “open” and “close” API
as POSIX, so there is no file descriptor. What is the advantage of not having a file descriptor?

Under the assumptions of Indy, in a file descriptive system, the server would have to maintain an
underlying data-structure for the file descriptor. To maintain overall recover-ability, the server would have
to ensure this data-structure is recoverable. So, the advantage of a file system without file descriptors is
that it is faster because it doesn’t have ensure this underlying data-structure is persistent. (Maintaining
persistence is slow because it involves writing to disk.)

4 Two-phase Commit

a

Two-phase commit is essentially implementing consensus. Is it still using the crash-stop failure model?

From lecture - “The failure model of two-phase commits is actually sometimes called the ‘crash-stop-
recover’ model.” Based on that, I’d say Two-phase commit uses the crash-stop-recover model and not
the crash-stop model.

b

Raft is a consensus algorithm we learned before. Under a slow network (messages timeout fre- quently),
which algorithm is more likely to let a transaction go through, Raft or two-phase commit? Why?

Raft is more likely to let a transaction go through. This is because both algorithms make use of
a coordinator, so the bandwidth is the same for both, so the network speed doesn’t matter. What’s
different is that Raft only needs a majority, whereas 2PC needs unanimity. Also every node in 2PC has
veto power, so that reduces 2PC’s chances of letting a transaction through. Raft can also survive network
partitions, so if the slow network is interpreted as failure of nodes, Raft is designed to keep working/heal
quickly. For these reasons, I believe Raft will let more transactions through.

(¢

In a decentralized variant of the two-phase commit protocol the participants communicate directly with
one another instead of indirectly via a coordinator. In phase 1, the coordinator sends its vote to all the
participants. In phase 2, if the coordinator’s vote is No, the participants just abort the transaction; if
it is Yes, each participant sends its vote to the coordinator and the other participants, each of which
decides on the outcome according to the vote and carries it out. Calculate the number of messages
and the number of rounds it takes. What are its advantages and disadvantages in comparison with the
centralized variant? Let’s assume that network is fast, so messages won’t timeout if machine doesn’t crash.

This will take two rounds. One for each phase. It won’t take more because if a node crashes, the
others will just abort. There will be (n — 1) + (n — 1)(n — 1) = n(n — 1) messages because each node
sends its decision to every other node. The disadvantage of this system is it takes more bandwidth than
regular 2PC. Other than that it’s just as persistent. One advantage is that if the coordinator fails, then
the rest of the nodes don’t think they have been partitioned.

5 View synchronous communication

Consider the diagram below:

M3
7 — " X
vd N T~
M2 \\ \v\\ ,
—— N \\
\ \\‘\.‘\ \.\\/v .
ML O\ ><><
M4 ‘

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

It shows communication among 4 processes which send 4 messages. The arrows shows when each message
is sent by a process and when it is received by each other process. At time 10, the first process crashes
(X). At time 11, process 2 detects this and sends a view change message (V) to the other two processes.

a

Consider that messages are delivered in causal order by following the rule that a received message is held
back if message that causally precede this message have yet to be received. Once the missing messages
are received, the messages get delivered immediately. (This is the same set up as in the first midterm.)
View changes are treated as just another type of message and are delivered according to the same rules.
Does this approach ensure view synchrony? If not, explain which of the requirements for view synchrony
are violated.

No, here is a sequence which defeats causal ordering scenario.
P1 >

Imaginary Crash event signal

V=(P2,P3)\
P2

V=(P2,P3)

\J

Regular Message

Regular Messa e// .
9 0 As can be seen in the counter

example, the messages are causally ordered, but because the view change signal of P2 and the Regular
Message of P3 are concurrent, there is nothing in causal ordering that prevents the Regular Message
from coming after and being in the next view thus violating the ”What happens in the View stays in the
View.”

v

b

Repeat the above part using a totally ordered delivery mechanism, where the order of messages is based
upon the time that the first other process receives them. (E.g., for M1 this would be t = 1 when it is
received by the first process.)

No, here is a sequence which defeats total ordering scenario.

v

Imaginary Crash event signal
gnary 9 Regular Message

v

v={P2,P3} ¥
~__

V=(P2,P3} Regular Message

»
>

As can bee seen in the counter example, the messages are totally ordered, but the regular message
from P1 gets delivered in the next view thus violating the ”What happens in the View stays in the View.”

C

Repeat the above part using a causal-total message delivery mechanism.

No, here is a sequence which defeats causal-total ordering scenario.
P1 >

Imaginary Crash event signal

=(P2,P3)\
P2

V=(P2,P3)

v

Regular Message

Regular Message/

As can be seen, these messages are causally ordered and totally ordered, but still violate ” What happens
in the View stays in the View.”

6 MapReduce

You are given a list of users and a corresponding list of their followers on a social network. Write a
Map-Reduce pseudo code to find those pair of users (a,b), who have at least 20,000 followers and follow
each other. You can have map-reduce chains to do this, however you are required to give a solution which
uses the minimum number of maps and reduces.

The input will be of type List[Pair[[UserID],List[UserID]]]. E.g., in Python the input might look like:

[("Alice", ["Bob","Carol","David"]),
("Bob", ["Alice", "David"]),
("Carol", ["Alice", "Evan"]),
("David", ["Alice", "Bob"]),
("Eva_n" s ["Ca.rol"])]

def mapFunc((Person,Followers)):
if len(Followers)>20,000:
emit (Person,Followers[i]).sort() for i in range(0,len(Followers))

def reduceFunc([key = (Personl,Person2)]):
total = 0
for number of times key appears in list
total += 1
if total==2:
emit Personl
emit Person2

This is my formula, with the functions defined above: (reduce reduceFunc (map mapFunc INPUT))

Interface Definition.

namespace py tutorial

service KeyValueStore

{
string Get(1:string key) ;
void Put(1l:string key, 2:string value);
void Delete(l:string key);

}

This is the skeleton.

class Processor(Iface, TProcessor):
def __init__(self, handler):
self._handler = handler
self._processMap = {}
self._processMap["Get"] = Processor.process_Get
self._processMap["Put"] = Processor.process_Put
self._processMap["Delete"] = Processor.process_Delete
def process(self, iprot, oprot):
(name, type, seqid) = iprot.readMessageBegin()
if name not in self._processMap:
iprot.skip(TType.STRUCT)
iprot.readMessageEnd ()
x = TApplicationException(TApplicationException.UNKNOWN_METHOD, ’Unknown function %s’ % (n
oprot.writeMessageBegin(name, TMessageType.EXCEPTION, seqid)
x.write(oprot)
oprot.writeMessageEnd ()
oprot.trans.flush()
return
else:
self._processMap[name] (self, seqid, iprot, oprot)
return True

def process_Get(self, seqid, iprot, oprot):
args = Get_args()
args.read(iprot)
iprot.readMessageEnd ()
result = Get_result()
try:
result.success = self._handler.Get(args.key)
msg_type = TMessageType.REPLY
except (TTransport.TTransportException, KeyboardInterrupt, SystemExit):
raise
except Exception as ex:
msg_type = TMessageType.EXCEPTION
logging.exception(ex)
result = TApplicationException(TApplicationException.INTERNAL_ERROR, ’Internal error’)
oprot.writeMessageBegin("Get", msg_type, seqid)
result.write(oprot)
oprot.writeMessageEnd ()
oprot.trans.flush()
def process_Delete(self, seqid, iprot, oprot):
args = Delete_args()
args.read(iprot)
iprot.readMessageEnd ()
result = Delete_result()
try:
self._handler.Delete(args.key)
msg_type = TMessageType.REPLY
except (TTransport.TTransportException, KeyboardInterrupt, SystemExit):
raise
except Exception as ex:

This begins the stub.

class Client(Iface):
def __init__(self, iprot, oprot=None):
self._iprot = self._oprot = iprot
if oprot is not None:
self._oprot = oprot
self._seqid = 0

def Get(self, key):
nmnn
Parameters:
- key
nmnn
self.send_Get (key)
return self.recv_Get()

def send_Get(self, key):
self._oprot.writeMessageBegin(’Get’, TMessageType.CALL, self._seqid)
args = Get_args()
args.key = key
args.write(self._oprot)
self._oprot.writeMessageEnd()
self._oprot.trans.flush()

def recv_Get(self):
iprot = self._iprot
(fname, mtype, rseqid) = iprot.readMessageBegin()
if mtype == TMessageType.EXCEPTION:
x = TApplicationException()
x.read(iprot)
iprot.readMessageEnd ()
raise x
result = Get_result()
result.read(iprot)
iprot.readMessageEnd ()
if result.success is not None:
return result.success
raise TApplicationException(TApplicationException.MISSING_RESULT, "Get failed: unknown result"

def Put(self, key, value):
nnn
Parameters:
- key
- value
nmnn
self.send_Put(key, value)
self.recv_Put()

def send_Put(self, key, value):
self._oprot.writeMessageBegin(’Put’, TMessageType.CALL, self._seqid)
args = Put_args()
args.key = key
args.value = value
args.write(self._oprot)

CS 438 HW2

Charles Swarts

October 2017

1

Recall that BitTorrent uses a choking mechanism to allocate bandwidth to peers. It “un- chokes” four
peers who have given it the best download performance (tit-for-tat), plus one of the remaining peers
chosen at random (optimistic unchoking). The choice of four best peers, as well as the random choice are
changed every 30 seconds.

Suppose Bob joins a BitTorrent swarm with 100 other peers. Let each peer, including Bob, have an
upload speed of 10Mbps and unlimited download speed. Consider what happens in the phase of the
protocol where for each pair of peers A and B, A has some blocks that B wants and vice versa; i.e, any
peer can productively download data from any other peer.

A

Question

Suppose Bob wants to upload no data; i.e., be a free rider. What will be his average download speed?

Answer

Because Bob does not contribute, **in the long run** he will never be a well connected neighbor. There-
fore his average download speed will come from optimistic unchoking.

For each altruistic peer in the torrent, there are 101 - self - 4 -(well connected peers) = 96 peers to
choose from randomly at any time. So the probability Bob is someone’s optimistically unchoked random
peer, P(RP) = 1/96. There are also 101-bob=100 altruistic peers in the torrent. Each altruistic peer
always has 5 connections sharing a 10Mbps upload speed, 10Mbps/5 = 2Mbps upload to each connection.
That leaves our final formula at

100(2Mbps - 91_6) = 2.083Mbps

B

Question

What will be the average download speed of each of the other peers?

Answer

Now we have also made the assumption that all uploading and downloading is useful. That means we
can assume full output from the altruistic nodes. Each altruistic node outputs 10Mbps and there are 100
of them, so thats 1000Mpbs. We know on average, Bob will recieve 2.89Mbps. That leaves (1000-2.89)
Mbps left for the other nodes. Since they are all altristic, we consider them semetric and therefore each
get equal download bandwidth. Meaning each remaining node recieves on average

1000 — 100(2 - g5) _ 479 »
= —— =9.97916Mb
100 48 9.97916Mbps

Which is hilariously what you also get for
98\ (96 98
(3)) (1) + (4)
99\ _ (96
(4) ’ (1)
Which is funny because that formula assumes all configurations of a node are equally likely.

C

Question

Suppose that Bob runs a second client that pretends to be a separate peer, who also becomes a free rider.
How fast can Bob download data now?

Answer

well, Bob is now has two peers so using the same logic as in A, that puts his download capacity at

2 12
100(2Mbps - —) =4— =~ 4.123Mb
00(ps 97) o7 3Mbps

D

Question

Suppose Bob switches his two clients to the regular BitTorrent code and they both start uploading as
well. What kind of aggregate download performance can he expect then?

Answer

All of the nodes are symmetric, this means on average they will upload the same ammount they download.
This means that Bob’s two clients each download 10 Mbps. That means his aggregate download is
20Mbps.

2
A

Question

Explain how a web server can carry on many HTTP connections simultaneously, even though all of the
packets sent to it in all the sessions are all addressed to its TCP port 80. That is, how does the right
packet get delivered to the right socket?

Answer

The packets all get sent to the right connection because a TCP connection is defined by a 4-tuple
consisting of source IP, port, client IP, port. So because the clients will be connecting from unique source
IP/port TCP can route the packets to the correct TCP connection.

B

Question

Are there any limitations on these simultaneous connections, such as, “a single host can only have one
HTTP connection with this server at a time”? If yes, describe the limitations, if no, explain why there
are no such limitations.

Answer

As defined by TCP, there is a limit if a client from every IP on every port tried to connect. For the same
reason in A that source IP/port is enough for TCP to uniquely route packets to connections. In reality
the limit would be on compute, buffer size, operating allowances for simultaneous connection requests.

3

Suppose within your web browser you click on a link to obtain a web page. The round-trip time to the
server is 150 ms and your download speed is 2 Mbps.

A

Question

How long will it take you to download the HTML of the web page, which is 10 KB in size, from the
time that you click on the link? (Assume that the necessary DNS infor- mation has been cached locally.)
Ignore the sizes of the HTTP request and response headers for all parts in this question.

Answer

It will take 3/2RTT to establish a TCP connection and make the HTTP request, and 1/2RTT+FileSize/Bandwidth
to get the page back.

10KB
2Mbps

80b
2Kbps

300ms + 40ms
= 340ms

2 - 150ms +

300ms +

B

Question

Suppose the HTML file references 8 images, each of which is 100KB in size. How long will it take you to
download the entire web page (starting from the click) using non-persistent HTTP connections?

Answer

It takes 1RTT to half establish a TCP connection and 1RTT + FileSize/Bandwidth to get each file since
neither pipelining nor persistent connection is in place.

> file size
Bandwidth

10KB + 8 - 100KB
2Mbps
ms - 8 - (810)
2
2700ms + 3240ms

= 5940ms

2-9-RTT +

18 - 150ms +

2700ms +

C

Question

What if you are using persistent connections (without pipelining)?

Answer

Now each additional file only takes 1RTT+FileSize/Bandwidth to get recieved. So we just subtract
(files-1)*RTT from the previous answer

5940 — 8 - 150 = 5940 — 1200 = 4740ms

D

Question

What about if pipelining is also used on the persistent connection?

Answer

Now We pay only RTT for a file after the first, and FileSize/Bandwith penalty for each additional file,
so we subtract (files-2)*RTT from the last answer.

4740 — 1050 = 3690ms

E

Question

Now consider a browser that uses non-persistent connections but will open up to 4 parallel connections
to the server to download multiple objects simultaneously.

Answer

This means for the first file we pay 2RTT, and for every 4 additional files, we pay 2RTT.
1.2RTT +2-RTT +) _ FileSizeBandwidth

6 - 150 + 3240ms
= 4140ms

4

Consider a 1 Gbps link that has a 100 ms round-trip time.

A

Question

How long will it take for the TCP connection to reach (approximately) full utilization using slow start?
Assume one MSS is 1500 bytes.

Answer

Since this calculation is approximate, lets just assume the cwnd doubles every RTT. We know the
connection can handle 1Gbps-.1s/1.5K BpS = 8.333K S That is, 8,333 segments per second. logz(8,333) ~
13.024 You reach full utilization, when you hit or cross the full utilization line. So, let’s round up to 14
RTT or 1.4 seconds to reach full utilization.

B

Question

How long would it take for it to reach full utilization if AIMD were used, starting with a congestion
window of 1 MSS?

Answer

Again, for this approximate calculation, we just assume with only additive increase that we send one
more segment every RTT. That means 8334 (rounding up remember) - 1 * RTT is how long it will take.
8333 - .1 =833.3s

5
5.1

Question

The TCP ACKs consume bandwidth. It would be better if the TCP receiver sends NACKs upon receiving
out of order (or corrupted) packets.

Answer

FALSE: NACKs create the possibility of steady double transmissions which is much worse than the
bandwidth consumed by TCP ACKs/without ACKs it would be impossible when to stop sending. Instead
of NACKs, we send duplicate ACKS.

5.2

Question

Assume TCP is in the Slow Start phase, with SSThreshold as 32. At some time instant, the congestion
window is 16. When the congestion window increases the next time, it will become 32.

Answer
FALSE: In a real system this is false, SS increases cwnd by 1MSS for every ACK. So next time it increases,

it will increase to 17.

5.3

Question

A TCP socket creates an end to end connection between two devices.

Answer

FALSE: from the book "TCP is to extend IP’s delivery service between two end systems to a delivery
service between two processes.” So TCP offers an end process to end process connection.

5.4

Question

The TCP sender has packets 20 to 30 in its congestion window (CW), all waiting for ACKs, when a
time-out occurs. The sender will cut down CW to 1 and will gradually retransmit each of these packets.

Answer

FALSE: TCP will cut the cwnd in half and transmit based on that, eventually retransmitting all of these
packets.

5.5

Question

Consider the case where a TCP sender transmits a file to a TCP receiver. A system ad- ministrator
tells you that during this transfer, no timeout or dupACKs were recorded. In that case, the congestion
window during the transfer should have never decreased (i.e., it should either remain same or increase).

Answer

TRUE: The finite state machine is pretty clear on this. Unless the file didn’t transmit at all, cwnd must
have either increased or stayed the same.

5.6

Question

The lower end of the TCP transmitters window is never greater than the lower end of the TCP receiver’s
window.

Answer

TRUE: assuming sender and receiver start at the same sequence number. The lower end of rwnd is
the last byte received, and the lower end of the transsmision window the last byte sent but not ACK’d.
Message is always received before it is ACK’d, so this is true.

5.7

Question

TCP can cope with any amount of losses, and hence, TCP should work without modifications on lossy
wireless networks

Answer

TRUE: assuming lossy means some packets get through. From the book we know.

1.22MSS

average throughput of a connection = ———
8 P RTTVL

So TCP will work over any network that doesn’t have total packet loss.

5.8

Question

The selective repeat receiver need not send an ACK if the received packet is less than its lower end of
the (current) receive window.

Answer

FALSE: ”In this case, an ACK must be generated, even though this is a packet that the receiver has
previously acknowledged.” Otherwise the sender will just keep sending packets for which the ACK got
lost / the send window wouldn’t move forward and progress would be halted.

6

Consider the Go-Back-N protocol with a send window size of N and a sequence number range of 4096.
Suppose that at time t, the next in-order packet that the receiver is expecting has a sequence number of
k. Assume that, the medium may drop packets but does not reorder messages.

A

Question

What are the possible sets of sequence number inside the sender’s window at time t? Justify your answer.

Answer

The sender could have sent packets [k— N, k—1] and is waiting for an ACK for each of them. Alternatively
the sender could have gotten an ACK for k — 1 and has sent [k, k + N — 1] and will definitely be waiting
for their ACK because the reciever hasn’t even seen k yet. Therefore the range of packets in the sender
window is [k — N,k + N —1].

B

Question

What are all possible values of the ACK field in the message currently propagating back to the sender
at time t? Justify your answer.

Answer

The receiver has yet to see k, and GBN uses cumulative ACKs, so the return message can’t have an ACK
with > k. We know there has been an ACK for £ — N — 1, otherwise the sender wouldn’t be able to send
k — 1. We also assumed packets don’t get sent out of order, so if ACK k — N — 1 was sent, then nothing
before it will be in transit. This means the sequence numbers in the current return messages must be in
the range [k — N,k — 1].

C

Question

With the Go-Back-N protocol, is it possible for the sender to receive an ACK for a packet that falls
outside of its current window? Justify your answer with an example.

Answer

If we assume packets can be reordered, then yes. Imagine sender sends k — N —2 and kK — N — 1 and
receives ACK k — N — 1 back, but k¥ — N — 2 gets heavily delayed. Then the sender window moves to
[k — N,k — 1], at which point ACK k — N — 2 arrives and is not in the window.

7

One difficulty with the original TCP’S RTT estimator is the choice of an initial value. In the absence of
any special knowledge of network conditions, the typical approach is to pick an arbitrary value, such as 3
seconds, and hope this will converge quickly to an accurate value. If this estimate is too small, TCP will
perform unnecessary retransmissions. If it is too large, TCP will wait a long time before retransmitting
if the first segment is lost. Also, the convergence might be slow.

A

Question

Choose o = 0.7 and RTT-timeout(0) = 1 seconds, and assume all measured RTT values = 0.5 second
with no packet loss. What is RT'T-timeout(15)? Recall,

RTT — timeout(k + 1) = o x RTT-timeout(k) + (1 — &) x RTT(k + 1)

Describe your solution approach (closed-form equation) AND provide the numerical result (approximate
to 4th decimal place).

Answer
Since each EWMA is a linear combination of inputs, it can be put into a closed form. Let’s abbreviate
RTT-timeout as RTTT
We know
RTTT(0) = (¢)RTTT(0) + (1 — «)RTTT(0)

We then then unroll the formula

RTTT(k+1) = a- RTTT(k) + (1 — a) - RTT(k + 1)

=a- (aRTTT(k—1)+ (1-a)- RTT(K)) + (1 -) RTT(k + 1)

:a~(a~(a-RTTT(k—2)+(1—a)-RTT(k—l))+(1—a)~RTT(k)>+(1—a)-RTT(k+1)

= a3RTTT(k —-2)+ (12(1 —a)RTT(k—1) + a(l —a)RTT(k) + (1 — «)RTT(k + 1)
The closed to this is

k
RTTT(k) = ()* - (RTTT(0)) + Y (1 — a)a* *RTT(k)

i=1

Plugging in for £ = 15 gives 0.5024 seconds.

B

Question

Using the same values as in above part, what happens if we use = 0.5 or = 0.9? Provide a numerical
result for RTT-timeout(15) in both cases, then describe the effect of a larger or smaller on the RTT
estimation procedure.

Answer

Plugging in a = .5 gives .5000 seconds, and plugging in o = .9 gives .6029 seconds. It is clear that the
smaller alpha inputs will make convergence happen faster.

10

8

For this question, you will refer to Figure 1. Assume slow start, unless otherwise mentioned. Copy the

timelines in your answer sheet and work on them.
gy 3

0 P
Time=0—— ome =0 1
Cw=1
/
K‘
Time=t, — \X
RTO ./2
Time = tz] Time = tl \h
Time=t, —
Time=t; —
v v
time time
4 v
(a) time time
(b)
8.1
Question

In Figure 1(a), what are the values of CW at times t1, t2, t3? How should the TCP transmitter react
after receiving A3 and A2.

Answer

According to the FSM, since A;, As, A3 are all new acknowledgements, cwnd will increase by 1 after
seeing each. Therefore at time t;, cwnd=2. At t3, cwnd=3. t3, cwnd=4
8.2

Question

In Figure 1(b), assume TCP starts from CW=1. What should CW be at times t1 and t2? How should
the TCP transmitter react after the timeout? How should the TCP transmitter react when each of the
the last two ACKs (shown in the figure) arrive?

Answer

At time t; cwnd=3 because it sees two ACKs and starts at 1.

The transmitter should react to the timeout by setting ssthresh to 3/2 - MSS. Setting cwnd to 1, settign
dupACKcount to 0, and retransmitting Ps.

The transmitter should react to the P, by incrementing cwnd to 2 MSS, moving to Congestion Avoidance
mode. Then upon seeing Ps, it should increase cwnd to 2.5 MSS.

11

1 P |
P1y
P1
P
cwW=8 — > CW=16——
Time=t, —
Time=1t, —
Time=t, —
A13 3
Time=t, Time =1, —
v 4 4 v
time time time time
(c) (d)
8.3
Question

In Figure 1(c), what should CW be at time t1? How should the TCP transmitter react upon receiving
A13?

Answer

Since it is in slow start and it sees a new ACK, it will increment cwnd.

8.4

Question

In Figure 1(d), what should the CW be at times t1, t2, t3, and t4? How should the TCP transmitter
react upon receiving each of the four ACKs?

Answer

Each ACK is new, so TCP will increment cwnd. Therefore
at t; cwnd=17
at to cwnd=18
at t3 cwnd=19
at t4 cwnd=20

12

CW =10
RTO

Time=t, -

time time time time

8.5

Question

In Figure 1(e), say that the first ACK that is shown to arrive at the TCP transmitter is A20. What
should the CW be at times t1 and t27 How should the TCP transmitter react upon receiving A20, when
the timeout occurs, and upon receiving the last shown ACK (just before t2)?

Answer

Since we are in Slow Start when A50 arrives, we increment cwnd, so that
at t;, cwnd = 11

Then the timout occurs, so cwnd gets reset to 1. When Ay4 arrives, then since it is a new ACK, we
increment cwnd. Therefore
at to, cwnd = 2

8.6

Question

In Figure 1(f), LIT is the acronym for linear increase threshold (AIMD). What should the values of CW
be at times t1, t2, t3, and t47 How should the TCP transmitter react upon receiving each of the ACKs?

Answer

With AIMD, cwnd increases by
MSS
cwnd
MSS

Every time it sees a new ACK. So at
t1 cwnd = 5.4MSS

to cwnd = 5.6MSS

13

t3 cwnd = 5.8MSS
tq cwnd = 6MSS

According to the FSM, the transmitter should only increment cwnd upon recieving the ACKs.

14

CS 473 HW2

Charles Swarts

February 2018

1

An intersection is connected via road to its parent intersection, its grandparent intersection, and all of its chil-
dren intersections. Therefore an intersection can only not be lit if all the other intersections it is connected to
are unlit.

The recursion:

cost(u) + .o 7(p,1,¢) where C is the set of u’s children

r(gp,u) = min {0 + > eccr(0,0,c) if(g=p=1) where C is the set of u’s children

Note: The recursion covers the base case of an intersection having no children intersections.

The recursion would be called on the root intersection, r, with g = 1,p = 1 because it has no parent road
or grandparent road to light.

Proof of correctness: By induction on tree level, 1

Base case: we have a leaf node with at least one of the parent or grandparent node unlit.
Then this node must be lit. This cost is covered in the first branch of the recurrence. The second branch will
not activate, therefore the cost of lighting this intersection will be the value returned. This is correct.

Base case: we have a leaf node with both parents lit.

This means the node can be unlit, which accrues no cost and is accounted for in the second branch. Since the
cost of lighting an intersection is strictly positive, the first branch of the recursion will return a positive value.
Therefore the result from the second branch, 0, will be chosen by the minimum function and returned as the
correct value for this case.

Inductive hypothesis: for a node at level [, our recurrence function returns the optimal value for lighting
this node’s children trees, at level [— 1, given whether the node at [is lit and whether the parent node at [+ 1
is lit.

Inductive step:

Case 1: one of the parent or grandparent node is unlit.

This node will look at the parent and grandparent node and if either one of them is unlit, it will become lit. It
will return this cost, and the optimal cost of lighting the children nodes under such conditions. Thus it returns
the optimal value of lighting the intersection tree starting at level [.

Case 2: both of the grandparent nodes are lit.

According to the if statement, both branches of the recursion are evaluated. Thus it compares the optimal cost
of lighting this intersection and having all intersection subtrees optimally lit in that scenario, vs the cost of not
having this intersection lit and having all intersection subtrees optimally lit in this scenario. Thus it will return
the optimal scenario for either way.

Thus evaluating the recurrence at any level of the tree will return the optimal value of lighting that subtree
with the initial starting conditions. .

This can then be turned into an iterative algorithm.

given a post-order traversal Traversal = nl1,n2,n3...nn
table[2] [2] [n];
for node in Traversal:

sum = cost(node);
for children of node:

sum += table[0] [1] [children];
table[0] [0] [node] = sum;

sum = cost(node);
for children of node:
sum += table[1] [1] [children];
table[0] [1] [node] = sum;
table[1] [1] [node] = sum;

sum = 0;
for children of node:
sum += table[0] [0] [children];
table[1] [1] [node] = min(sum , table[1][1] [node]);

return table[1][1] [nn];

Runtime: During the body of the outer loop, each node looks at its children 3 times. That means there are
3n lookups in the table. For each lookup, the result is added to an accumulator in constant time. All other
statements in the outer loop together happen in constant time. Thus the algorithm is O(3n) = O(n).

2

a.

There exists a version of the numbers game where I win iff I do not use the greedy strategy.

Proof: This means there is a game where following the greedy strategy will lead me to lose, where if I were to
follow a different strategy, I would win. Consider the following such game.

5,99,1,1
Greedy strategy: I choose 5, my opponent chooses 99, I choose 1, they choose 1. I lose.

Alternate strategy: I choose 1, my opponent chooses 5, I choose 99, they choose 1. I win. g

b.

The algorithm to maximize the winnings in the game is to play every game and measure the difference in score.
This can be done with the following recurrence on sequence X:

'Xstart if start = end
ma‘X(XstartaXend) if start + 1 = end
Xetar tart + 2, end if Xuarer1 > X .
r(start, end) = < start + 7(start + 2, end) l start+1 end otherwise
XKstart + 7(start + 1,end — 1) if Xgpari+1 < Xend
max
Xend + r(start,end — 2) if Xgtart < Xend—1

Xend + r(start + 1aend - 1) if Xstart+1 > Xend

Proof of correctness of recurrence.
Proof by induction on [, the length of the sequence.

Base case: | = 1. That means the start of the sequence and the end of the sequence are the same. Ac-
cording to the recurrence, this element’s value is the total possible sum. Since it is your turn, this result is
easily seen to be correct. Base case: [= 2. That means the start and the end of the sequence are 1 apart. Our
recurrence says the largest sum is the maximum value of the two remaining elements. Since it is your turn, this
result is easily seen to be correct.

Inductive hypothesis: we assume the recurrence gives the correct sum for all subsequences of length k — 2.

Inductive step: given a sequence of length k£ > 2 then the there are only two ways proceed, either you choose
the left or the right element. Then your opponent chooses the left or the right element greedily. Depending on
which element they pick, you will be left with trying to maximize your sum in a smaller game over a subsequence
of length k — 2. Therefore the maximum sum will be the element you picked + the maximum sum you could get
from a game over the resulting subset. Both of these are considered in the inner branching, and the maximum
is returned, therefore the recursion will return the maximum sum possible to get from a sequence of length k.

Therefore by induction, our recursion will correctly give the maximum sum possible to achieve against a greedy
opponent in a game of a sequence of any size [. O

This recursion can be converted to the following iterative algorithm.

number [] Sequence;
table [n][n];

// First base case;
for i in 0 to n-1:
table[i] [i] = Sequence[il;

// Second base case;
for i in 0 to n-2:
table[i] [i+1] = abs(Sequence[i] - Sequence[i-1])

for length in 2 to n-1:
for start in O to n-1-length:
end = start + length;

takeLeft
takeRight

0;
0;

if (Sequence[start+1] > Sequence[end]){
takeLeft = Sequence[start] - Sequence[start+1];
takeLeft += table[start+2] [end] 3
}
else if(Sequence[start+1] < Sequence[end]){
takeLeft = Sequence[start] - Sequence[end] ;
takeLeft += table[start+1] [end-1] ;
}

if (Sequence[start] < Sequencel[end-1]){
takeRight = Sequence[end] - Sequence[end-1] ;
takeRight += table[start] [end-2] ;

}

else if(Sequence[start] > Sequence[end-1]){
takeRight = Sequence[end] - Sequence[start] ;
takeRight += table[start+1] [end-1] 3

}

table[start] [end] = max(takeLeft,takeRight);

return table[0] [n-1];

Runtime: The outer loop loops n—3 times. The inner loop loops n times. The body of the loop runs in constant
time. thus the algorithm runs in O((n — 3) ¥ n) = O(n?).

3

This problem can be solved in polynomial time by dynamifying this recurrence.

r(#s1, #52, #53, bin#, usage, maxL) =
maxL if #s1 = #so=H#s3=0
#81,#82, #s3, bin# + 1, cap(bin# + 1), maxL) if bin# <m -1
#s1 — 1, #s9, #s53, bin#, usage’, max(maxL, usage’)) if #s; > 0, usage’ < cap(bin#) where usage’ = usage + s1

s 03

min
#51,#82 — 1, #s3, bin#, usage’, max(maxL, usage’)) if #s2 > 0, usage’ < cap(bin#) where usage’ = usage + s2

<

~ o~~~

r(#s1, #82, #s3 — 1, bin#t, usage’, max(maxL, usage’)) if #s3 > 0, usage’ < cap(bin#) where usage’ = usage + s3

if no other statements are true

8

Argument for correctness:

This recurrence will attempt every configuration of putting the items in the buckets and will pick the best
one.

Runtime: we have three variables to hold the number of items of each of the three sizes as parameters to
the recurrence. There are n items so in the worst case their they could require (n/3)% loops to iterate for
each of those loops. This is by the principle of maximum hypervolume of a hypercube with positive finite
sides. (Ruta said in office hours that I could use this principle). Then there will be a loop for each of the
bins. There are m bins. Then we have to loop over the range from 0 to the maximum usage. Since maxL is
a the value stored in the table, we won’t loop over it. Thus the total running time of the algorithm would be
O((n/3) - m - maximum capacity) = O(n® - m - maximum capacity).

Homework &

Charles Swarts
Swarts2

March 2016

1 8.14

1.1 question
A Queue

A bus is supposed to arrive at a bus stop every hour for 10 hours each day. The number of people
who arrive to queue at the bus stop each hour has a Poisson distribution, with intensity 4. If the bus
stops, everyone gets on the bus and the number of people in the queue becomes zero. However, with
probability 0.1 the bus driver decides not to stop, in which case people decide to wait. If the queue is
ever longer than 15, the waiting passengers will riot (and then immediately get dragged off by the police,
so the queue length goes down to zero). What is the expected time between riots?

Solution: I'm not sure whether one could come up with a closed form solution to this problem. A
simulation is completely straightforward to write. I get a mean time of 441 hours between riots, with
a standard deviation of 391. It’s interesting to play around with the parameters of this problem; a less
conscientious bus driver, or a higher intensity arrival distribution, lead to much more regular riots.

1.2 raw simulation code

days_Simulated <- 1000000

intensity <- 4
max_Line_Length <- 15
prob_busDriver_flakes <- .1
timelength <- 1

#The strategy is to make a sample space for
#arrival rate of the people and the arrival
#of the bus driver. In simulating the line,

#I will make a sample space that includes
#probabilities for 0:max_Line_Length,
#(>max_line_length), because if that many
#people show up, the line automatically riots.

sampleSpace <- 0:(max_Line_Length+1)
sampleSpaceProbs <- c()
for(i in O:max_Line_Length){
sampleSpaceProbs <- c(sampleSpaceProbs, ((intensity*timelength)~i)/(factorial(i))*exp((-1)*intensityx
}

sampleSpaceProbs <- c(sampleSpaceProbs, 1-sum(sampleSpaceProbs))

arrivals <- sample(sampleSpace,10*days_Simulated,replace=TRUE, prob=sampleSpaceProbs)

busSpace <- c(0,1)
busSpaceProbability <- c(.1,.9)

busComes <- sample(busSpace,10*days_Simulated,replace=TRUE,prob=busSpaceProbability)

peoplelnLine <- O
#riots is a list of time-lengths between riots.
riots <- c()
counter <- 1
#The riot Counter is the number of hours between riots.
riotCounter <- 0
for(i in 1:(days_Simulated#*10)){
riotCounter <- riotCounter+1
peopleInline <- peopleInLine+arrivals[i]

if (peopleInLine>max_Line_Length){
riots <- c(riots,riotCounter)
riotCounter <- 0
peoplelnLine <- O
}

if (busComes[i]==1) {peopleInLine <- 0}

#This code follows from the fact that the bus
#runs 10 times/day and at night, people who
#are waiting go home.

if ((counter?%10)==0) {peopleInLine <- 0}
counter <- counter+l;

}

mean(riots)
sd(riots)

1.3 Answers
Simulating 1000000 days,

I got the mean time between riots was 491.7139 hours. And the Standard Deviation between time
between riots was 492.683.

2 8.15

2.1 question

Inventory

A store needs to control its stock of an item. It can order stocks on Fri- day evenings, which will
be delivered on Monday mornings. The store is old- fashioned, and open only on weekdays. On
each weekday, a random number of customers comes in to buy the item. This number has a Pois-
son distribution, with intensity 4. If the item is present, the customer buys it, and the store makes
100; otherwise, thecustomerleaves. Eacheveningatclosing, thestoreloses10 for each unsold item on its
shelves. The store’s supplier insists that it order a fixed number k of items (i.e. the store must order k
items each week). The store opens on a Monday with 20 items on the shelf. What k should the store use
to maximise profits?

Solution: I'm not sure whether one could come up with a closed form solution to this problem, ei-
ther. A simulation is completely straightforward to write. To choose k, you run the simulation with
different k values to see what hap- pens. I computed accumulated profits over 100 weeks for different k
values, then ran the simulation five times to see which k was predicted. Results were 21, 19, 23, 20, 21.
I’d choose 21 based on this information.

2.2 raw simulation code

weeks_Simulated <- 100

original_stock <- 20
intensity <- 4
k <- 19

#My strategy for calculating the probabilities

#of the sample space for the number of

#customers who walk through the is to caluculate

#up to 2 * Expected[people who come in during the week]
#because I think it would be unlikely that that
#number of people walks into the store.

#The expected # of people for a poisson dist

#is intensity * time or 5%4 which is 20

#Therefore I will be calculating up to 40.

#numPeople ()

prob_Num_People <- c()

for(i in 0:(intensity*5x2)){

prob_Num_People <- c(prob_Num_People, ((intensity) "i)/(factorial(i))*exp((-1)*intensity))
;rob_Num_People <- c(prob_Num_People,1-sum(prob_Num_People))

Num_People <- 0:(intensity*5x2+1)

people_by_Day <- sample(Num_People,weeks_Simulated*5,replace=TRUE,prob=prob_Num_People)

#people_by_Day
cashFlow <- c(0)

for(i in 1:(weeks_Simulated*5)){

if (it=1){
if (people_by_Day[i]>original_stock)
{

cashFlow([i] <- (cashFlow[i-1]+100*original_stock)
original_stock <- 0

}

else{
cashFlow[i] <- (cashFlow[i-1]+100*people_by_Day[i])
original_stock <- original_stock-people_by_Day[i]

}
}
else{
if (people_by_Day[i]>original_stock)
{
cashFlow[i] <- (100*original_stock)
original_stock <- 0
}
else{
cashFlow[i] <- (100*people_by_Dayl[i])
original_stock <- original_stock-people_by_Day[i]
}
}

cashFlow[i] <- (cashFlow[i]-10*original_stock)
if (i%%5==0){original_stock <- original_stock+k}
}
plot(cashFlow)
people_by_Day
cashFlow[length(cashFlow)]

2.3 Answers

I did not throw product out at the end of the week, so when I plotted what it looks like when you order
20, I got plots like this:

cashFlow
40000
|

0
|

| | | | |
0 100 200 300 400 500

Index

where I only made $84400 after 100 weeks, and plots like this when I ordered 19 each week

cashFlow
60000
|

0
|

0 100 200 300 400 500

Index

and made $129550
therefore I believe 19 to be the best amount to order each week.

3 8.2

3.1 question

8.2. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that, you stop. Write P(N)
for the probability that you roll the die N times.

(a) What is P(1)?

(b) Show that P(2) = (1/36).

(c) Draw a finite state machine encoding all the sequences of die rolls that you could encounter. Don’t
write the events on the edges; instead, write their probabilities. There are 5 ways not to get a 5, but only
one probability, so this simplifies the drawing.

(d) Show that P(3) = (1/36).

(e) Now use your finite state machine to argue that P(N) = (5/6)P(N1) + (25/36)P(N2).

3.2 answer

(a). P(1) according to the diagram is 0 because there is no walk of length one from START to 6.
Alternative reasoning is that you can’t get a five then a 6 in one role.

(b). P(2) according to the diagram is 1/36 because there is only one walk of length 2 from START
to 6 and one of the edges has a P(E) = 1/6 and the other has P(E) = 1/6 so to traverse both is
P(E)NP(E) which is P(E)*P(E) since they are independent, and 1/6%1/6 = 1/36 Alternative reasoning
is that you would have to get a 5 and then a 6 to end the game and the probability of getting a 5 then a
6is1/6x1/6 =1/36

(c) See diagram above

(d) P(3) according to the diagram is 1/36 because the three walks that go from start to three are

START —5—5—6=1/6%1/6%1/6=1/216

START -6 —>5—6=1/6%x1/6%1/6=1/216
START — 1234 -5 —6=1/6x1/6+1/6 = 4/216
adding all the possibilities together makes 6/216 = 1/36 This follows the general formula

P(n) = 3" P((n = 1))

Alternative reasoning is that in order to roll three before the game is over, you would have to get a 5
and a 6 on the second and third rolls respectively. It doesn’t really matter the outcome of the first state,
S0 you can say it could be ”anything,” and ”anything” has a probability of 1. P(2) has a probability of
1/36 so 1% 1/36 = 1/36 which also begets the answer.

4 8.3

4.1 question

8.3. More complicated multiple coin flips: You flip a fair coin until you see either HTH orTHT, and
then you stop. We will compute a recurrence relation for P(N).

(b) Write) 5 for some string of length N accepted by this finite state machine. Use this finite state
machine to argue that), has one of four forms:

1.7T Z
N-2

2.HH Z
N-2

3.THH Y
N-3

4.HTT Z
N-3

(c) Now use this argument to show that

P(N) = (1/2)P(N —2) + (1/4)P(N — 3).

4.2 answer

(b) So the triggers for the end state of this finite state machine are THT and HTH. And also I define
the word ”safe” to mean: can’t cause the end state in one move. At the beginning, after the first coin
flip you are safe, because if you draw a heads or a tail on the second flip, you still haven’t triggered the
end state.

Let’s start with base cases, either the first is H or T, if it’s H then, according to the state machine,
the next sequence has to be either H, or T'T for the sequence to be safe again. If you start out with T,
then the next sequence has to be either T' or HH before you know you are safe again.

Being safe means that you have recreated the conditions at the start for the last flip in the running
sequence. IE you get the HT'T scenario, it has now become like if Tails was the first outcome you got so

that the two sequences availible to you are T and HH

It must be noted here that the), implies that it is based off of what came before it. This is so
you can never get the case TTHTTH Y N — 6

Also, for each flip, the rest of the sequence decreases by one.
So to conclude all of this, there are four starting sequences that result,

1:HH Y
N-2
2:TT)
N-2

3:HTT Y
N-3

4:THH z
n—3

(c) So if we have the previous as the possible outcomes, we can break them down into their component
parts which are:

1: The initial outcome. The initial outcome is boring because it is always safe, so the probability of
it being correct is 1.

2:The second component which gives a 1/2 probability that the sequence is determined by the P(N — 2)
or that it will go to the alternative.

3: In the alternative, we once again have a 1/2 chance that the variable lines up and the Probabil-
ity is based on P(N — 3)

That gives an overall probability for P(N)

1 1 1 1 1
P(N):1*§*P(N—2)+1*§*§*P(N—3)=§P(N_2)+ZP(N_3)

5 9.2

5.1 question

9.2. Fitting a Poisson Distribution: You count the number of times that the annoying “MacSweeper”
popup window appears per hour when you surf the web. You wish to model these counts with a Poisson
distribution. On day 1, you surf for 4 hours, and see counts of 3, 1, 4, 2 (in hours 1 through 4 respec-
tively). On day 2, you surf for 3 hours, and observe counts of 2, 1, 2. On day 3, you surf for 5 hours, and
observe counts of 3, 2, 2, 1, 4. On day 4, you surf for 6 hours, but keep only the count for all six hours,
which is 13. You wish to model the intensity in counts per hour.

(a) What is the maximum likelihood estimate of the intensity for each of days 1, 2, and 3 separately?
(b) What is the maximum likelihood estimate of the intensity for day 4?

(c) What is the maximum likelihood estimate of the intensity for all days taken together?

5.2 answer

After reading the section, I found the maximum likelihood formula for the Poisson distribution is

"_Zini
o= N
@ 3+1+4+2 10
Firstday:zj"vni=(+ 1_ +)=Z=2_5=é
Duni (2+142) 5 o 4
Second day: N - 3 —3—1.66—9

(b) Because we are given the total occurrences for the forth day, we can treat that as the sum of all the
individual periods. And we know there were 6 periods because that’s how many hours were surfed.

Eini E _ 13 A

(c) The formula should still hold over different days because Poisson distribution models independent
events.

Yyni 10+5+12+13 30

- == —166=40
N 4+3+5+6 1g ~ 106

Combined days:

6 9.4

6.1 question

9.4. Fitting a Binomial Model: You encounter a deck of Martian playing cards. There are 87 cards in
the deck. You cannot read Martian, and so the meaning of the cards is mysterious. However, you notice
that some cards are blue, and others are yellow.

(a) You shuffle the deck, and draw one card. It is yellow. What is the maxi- mum likelihood estimate of
the fraction of blue cards in the deck?

(b) You repeat the previous exercise 10 times, replacing the card you drew each time before shuffling.
You see 7 yellow and 3 blue cards in the deck. What is the maximum likelihood estimate of the fraction
of blue cards in the deck?

6.2 answer

(a) So to solve this problem, we will use the ML formula for the binomial to find the probability of getting
blue. The formula is § = k/N where k is the number of times that result appears and N is the number
of trials. For this we did one trial, so N =1 and k = 0 because we got no blue cards.

P(bluecamd):O:N:I:O

So the fraction of blue cards in the deck is equal to the probability of getting a blue card, in this
case. Therefore according to the maximum likelihood estimate, THERE ARE NO BLUE CARDS IN
THE DECK.

(b) Using the same reasoning as a, we can simply plug into the formula the number of blue cards:3
out of the number of trials:10 to get

~ k3
P(blue card) =0 = N-10" 0.3

(Est: Fraction of blue cards) = .3

10

Homework 12

Charles Swarts
swarts2@illinois.edu

April 2016

1 Problem 1

1.1 question

This time we’re going to work on two different datasets.

Problem 1.

Generate three 2D Normal distributions with random mean vectors and unit variances. The Euclidean
distance between the three random mean vectors shouldn’t exceed 3. What that means is that you
randomly define three 2D means, and your covariance matrices are all identity matrices. Draw 100
samples per distribution. Overall, you have 300 samples from three Gaussians. Pretend like that you
don’t know which sample belongs to which Gaussian.

(a) Scatterplot the samples. Use different colors or markers to distinguish samples from different
distributions. Also, mark the positions of the original means. (b) Write your own code to do k-means
clustering on this dataset. Show your estimated means on the scatterplot, and compare them to the
original ones.

2 Answer

v2

(a).

(b). My actual means were

1: 0,0
2: 3,0
3: 1.5,2.598
My estimated means were

1: —0.012698883, —0.007750091
2: 3.1458264815, 0.0007224473
3: 1.462456, 2.725030

They are pretty close to the mark in at least one dimension. 2 and 3 have one dimension that is off
by .1.

V2

v

2.1 Raw Code

#For this question, I am picking the points (0,0)
#(3,0) and (1.5,2.598) each of which you will see
#have a euclidian distance of 3 from each other.

#Here the three 2D normal distributions are being
#drawn from.

vl
v2
vl
v2
vi
v2

rnorm(100,0,1)
rnorm(100,0,1)
c(vl,rnorm(100,3,1))
c(v2,rnorm(100,0,1))
c(vl,rnorm(100,1.5,1))
c(v2,rnorm(100,2.598,1))

#v3 keeps track of who’s who.

v3<- factor(c(rep("x1",100) ,rep("x2",100) ,rep("x3",100)))

#Makes a dataframe to help keep track.
pointsFrame<- data.frame(cbind(v1,v2,v3))

#Here is the original plot before clustering.
plot(v2~v1,col=v3,pch=9)
text(0,0,"(0,0)",col="white")
text(3,0,"(3,0)",col=9)
text(1.5,2.598,"(1.5,2.598)",col=9)

#The points are here to keep track
#of if the algorithm has found the
#stable state.

oldPoints <- c(-1,-1,-1)

#newPoints first draws three random
#indices out of a hat.
newPoints <- sample(1:300,3,replace=FALSE)

#While not at a stable state.
while(newPoints[1] !=0ldPoints[1] |newPoints[2] !=01dPoints[2] InewPoints[3] !=01dPoints[3])
{

#This is how I keep track of the old points.

o0ldPoints <- newPoints

#Here is the space for the three clusters.

clusterOne <- c()

clusterTwo <- c()

clusterThree <- c()

#This sorts all threehundred points by cluster.
for(i in 1:300)
{
#First the square distance from the k points
#is calculated for every point in the field.
SqrdistanceFroml <- (pointsFrame[i,1]-pointsFrame[0ldPoints[1],1])"2
SqrdistanceFroml <- SqrdistanceFroml+(pointsFrame[i,2]-pointsFrame[oldPoints[1],2])"2
SqrdistanceFrom2 <- (pointsFrame[i,1]-pointsFrame[0ldPoints[2],1])"2
SqrdistanceFrom2 <- SqrdistanceFrom2+(pointsFrame[i,2]-pointsFrame[oldPoints[2],2])"2
SqrdistanceFrom3 <- (pointsFrame[i,1]-pointsFrame[0ldPoints[3],1])"2
SqrdistanceFrom3 <- SqrdistanceFrom3+(pointsFramel[i,2]-pointsFrame[0oldPoints[3],2])"2

#These if statements deposit the points in the
#appropriate cluster.
if (SqrdistanceFroml<=SqrdistanceFrom2&SqrdistanceFromi<=SqrdistanceFrom3)
{
clusterOne <- c(clusterOne,i)
}
else if (SqrdistanceFrom2<=SqrdistanceFrom3&SqrdistanceFrom2<=SqrdistanceFroml)
{
clusterTwo <- c(clusterTwo,i)

}

else if(SqrdistanceFrom3<SqrdistanceFrom2&SqrdistanceFrom3<SqrdistanceFroml)
{

clusterThree <- c(clusterThree,i)

}
#This warns me of dirty bugs.
else
{
print ("bug")
}

}

#Next the means of the clusters are calculated.
clusterOneMean <- mean(pointsFrame[clusterOne,1])
clusterOneMean <- c(clusterOneMean,mean(pointsFrame[clusterQOne,2]))

clusterTwoMean <- mean(pointsFrame[clusterTwo,1])
clusterTwoMean <- c(clusterTwoMean,mean(pointsFrame[clusterTwo,2]))

clusterThreeMean <- mean(pointsFrame[clusterThree,1])
clusterThreeMean <- c(clusterThreeMean,mean(pointsFrame[clusterThree,2]))

#Finally the point in each cluster closest to the

#mean is made to be the new k point for the cluster.

newPoints[1]<- clusterOne[which.min((pointsFrame [clusterOne,1]-clusterOneMean[1]) "2+
(pointsFrame[clusterOne,2]-clusterOneMean[2])~2)]

newPoints[2]<- clusterTwo[which.min((pointsFrame [clusterTwo,1]-clusterTwoMean[1]) "2+
(pointsFrame [clusterTwo,2] -clusterTwoMean[2])~2)]

newPoints[3]<- clusterThree[which.min((pointsFrame[clusterThree,1]-clusterThreeMean[1]) "2+
(pointsFrame [clusterThree,2]-clusterThreeMean[2])~2)]

#Next the algorithm will reevaluate if it is in a stable state.

#If not, it will continue.

}

#This is space for the new classifications.
clustersAfter <- rep(" ",300)

#Now the labels are reapplied.

#The awkward pairing makes sure the coloring lines up.
clustersAfter[clusterOne] <- "x2"
clustersAfter[clusterTwo] <- "x3"
clustersAfter[clusterThree] <- "x1i"

#This factorized clustersAfter to make sure
#the clustering "sticks."
clustersAfter <- factor(clustersAfter,levels=c("x1","x2","x3"))

#And here is the plot of the data afterwards.
plot(v2~v1l,col=clustersAfter,pch=9)
text(-0.012,-0.007,"(-.012,-.007)",col="pink")
text(3.1458,0,"(3.145,0.000)",col=9)
text(1.462,2.72,"(1.462,2.725)",col=9)

3 Problem 2

3.1 question

Problem 2.

Attached is a picture of El Capitan in the Yosemite National Park. Do the k-means clustering using
your code to cluster the pixels into three groups: ”sky”, "rock”, and ”tree”. Now, redraw the picture by
using your three means you found (which means that every pixel can have to choose its color from the
three mean values). Note that if you ignore all the positions of the pixels, you can reformulate the image

into a matrix of (3 X of all pixels).

3.2 answer

Here is the finished product. It is a clusterized, or as I like to call it, ”Warhol-ized” photo of the
original. And I diffed it with the one on Piazza, they are different despite looking very similar. I am
assuming that because the question did not say to label the photo, I don’t have to. Anyways, the real
story with this question is in the code. My code is generalized to any number of colors you wish to have,
and it prevents infinite loops. Feel free to use it actually... if you want.

raw code

#This library is necessary to read and write jpegs

install.packages("jpeg")
library(jpeg)

#Read in the jpeg
myjpg <- readJPEG("/users/CharlesBSwarts/Desktop/elcapitan3. jpg",native=FALSE)

#Set the number of colors you want it to have
k<3

#Seperate the 3D array into 3 1D vectors.
RED <- as.vector(myjpgl,,1])

GREEN <- as.vector(myjpgl,,2])

BLUE <- as.vector(myjpgl,,31)

#Ponts is a vector of indices that are the mean/
#starter points of the next iteration of the
#k-means clustering.

newPonts <- c()

length(newPonts) <- k

oldPonts <- rep(-1,k)

#Need to pick k random points.
newPonts <- sample(1:(dim(myjpg) [1]*dim(myjpg) [2]) ,k,replace=FALSE)

#Now, clusters are stored in a jagged array,
#but R does not support jagged arrays except
#in lists of lists. So this clus is going to
#be the list that holds the other lists.
clus <- list()

length(clus) <- k

#DisSqr is the square distance of each point
#from the means.
DisSqr <- as.data.frame(matrix(ncol=k,nrow=dim(myjpg) [1]*dim(myjpg) [2]))

#clusMean is the mean of the values for each
#of the colors
clusMean <- as.data.frame(matrix(ncol=k,nrow=3))

#This stopper is here just in case we get an
#overly noisy photo or for some reason the
#algorithm begins to cycle.

stopper <- 0

#If the old points equal the new points, then
#we have found a minimum.
while(!all(oldPonts==newPonts)&stopper<100)
{
#Store the new points as the old points.
oldPonts <- newPonts
#reset the clus list.
clus <- list()

#This calculates the square distance of every
#point from every k point.
for(i in 1:k)
{
DisSqr[,i] <- (RED-RED[oldPonts[i]])~2+(GREEN-GREEN [oldPonts[i]]) "2+
(BLUE-BLUE [01dPonts [i]]) "2
}

#This calculates the minimum in every row
values<- apply(DisSqr,1,min)

#This sorts the respective points to their
#respective cluster.
for(i in 1:k)
{

clus[i] <- list(which(DisSqr[,i]==values))
}

#This calculates the mean value for each cluster
for(i in 1:k)
{
clusMean[,i] <- c(mean(RED[unlist(clus[i])]) ,mean(GREEN [unlist(clus[i])]) ,mean(BLUE[unlist
}

#This chooses new starting k points based
#on the mean value of each cluster.
for(i in 1:k)
{
newPonts[i]<- unlist(clus[i]) [which.min((RED[unlist(clus[i])]-clusMean[1,i]) ~2+(GREEN [unlist
}
#Increment the nasty stopper to avoid
#infinite loops
stopper <- stopper+l

#This creates vectors to be reinverted back
#into an image.

mapRED <- c()

mapGREEN <- c()

mapBLUE <- c()

length(mapRED) <- dim(myjpg) [1]*dim(myjpg) [2]
length (mapGREEN) <- dim(myjpg) [1]*dim(myjpg) [2]
length(mapBLUE) <- dim(myjpg) [1]*dim(myjpg) [2]

#This function puts the k point’s color
#onto every pixel in its cluster.

for(i in 1:k)

{

mapRED [unlist(clus[i])] <- RED[newPonts[i]]
mapGREEN [unlist (clus[i])] <- GREEN[newPonts[i]]
mapBLUE [unlist (clus[i])] <- BLUE[newPonts[i]]

}

#This creates the final array for the writeJPEG
#function

imgArr <- array(dim=c(dim(myjpg) [1],dim(myjpg) [2],3))
imgArr[,,1] <- mapRED

imgArr[,,2] <- mapGREEN

imgArr[,,3] <- mapBLUE

#And this outputs the photo.
writeJPEG(imgArr,target="/users/CharlesBSwarts/Desktop/Warhol. jpg",quality=1)

MATH 347 HW7

Charles Swarts
swarts2@illinois.edu

October 2016

1 Q145

(—) Find a counterexample to the following false statement. ”If a, < b,, for all n and) b, converges,
then > a, converges.”

Premise: counter-example.

Let a, = —1 and b, = 0 then a, < b, for all n and Y b, converges like so

o0

ibn=20=0
n=1 n=1

But if we assume the series > | a, converges to S

n=1 n=1
S=> -1
n=1
S=-1+) -1
n=1
S+1=S"-1
n=1
S+1=3S5
1=0 X

So 3 a,, must be divergent.

Recap: we found an (a) and (b) where a, < b, and) b, is convergent, but where Y a, is diver-
gent. W

2 Q 14.12

If a, — 0 and b, — 0, then }_ a,b,. converges.
Premise: false due to counter-example.

Consider the sequence ¢, = % This sequence fails to produce a convergent series. Here is proof from
the book

14.28. Example. The harmonic series. Consider Y 7 ;1/k. To see that) ;- ;1/k diverges even
though 1/k — 0, we compare this with another divergent series whose terms approach 0. Let (c) =
3 3.5 58:5:15 -+ here there are 27~ copies of 1/27 for each j > 1. Since the copies of 1/27 for each
fixed j sum to 1/2, for each M € N the partial Y }'_, ¢ exceeds M for large enough n, and Y} _, cx. The
last copy of 1/27 in (c) is the 2/ — 1th term. Thus we have 1/k > cj, for every k. For each n, summing

n of these inequalities yields ;_;1/k > > p_; cx. Hence Y. ._; 1/k also diverges. |

(Mathematical Thinking Problem Solving and Proofs, D’Angelo and West, Second Edition, ISBN 0-
13-014412-6, page 282)

So then take a, =1/y/n and b, =1//n

Lemma: lim,, ﬁ =0

Lemma Premise: definition of limit

The definition of a limit states that
VeeR, e>0, ANeN, VneN, n>N=|a,—L|<e

‘We need to show

1
— —-01<
| \/ﬁ | €
Since 1/4/n > 0, it is sufficient to show
1
— <
N
L <
—<n
€2
Therefore N exists. a
So according to the lemma, a, — 0 and b, — 0
But a, * b, = ¢,, and we know (c) doesn’t produce a converging series. |

3 Q14.13

Prove that if (a) converges, then every subsequence of (a) converges and has the same limit as (a).
Premise: Proof by definition of limit and subsequence.

By definition of subsequence, a subsequence, (As), is a subsequence of a sequence, (A), if As;=Ay(;
where f : N = N is an increasing function.

Lemma: f(i) > ¢
Lemma Premise: induction on &

Base Case: k=1

f(1) must be a natural number, so f(1) > 1. v

Inductive Step
Hypothesis: f(k) >k

By definition of increasing function
k+1>k = f(k+1)>f(k)
fk+1) > f(k) >k
f(k+1)>k
flk+1)>k+1
So by the principle of induction, f(z) > 4 a

The definition of a sequence converging is the same as it having a limit. The definition of a limit,
L € R, for an ordered sequence of real numbers, (4) is

VeeR ,e>0, 3INeN, VneN, n>N=|A,—L|<e

So by the lemma,
f(N) =N

And by definition of increasing
n>N = f(n)2f(N)2N

So
n2N=>f(n)2N=>|Af(n)—L|<e
n>N=f(n)>N=|As,—L|<e
This means that any subsequence of (A) must also converge and have L as its limit. |
4 Q14.30

Let (z) be the sequence given by z; = 1 and z,41 = 1/(21+ -+,) for n > 1. Prove that (z) converges,
and obtain the limit.

Premise: Use MCT and infinity trick.

Lemma: First let us give a lower bound by showing that Vn, z, >0

Lemma Premise: Proof by strong induction on &
Base Case: k=1 z,=21=1 V

Induction: Assume all z;-z are positive, then their sum is positive.
1
Tk+1 = k
1%

1=

Since the the numerator and denominator on the RHS are positive, x4 is positive. O

So we see there is a lower bound on z,. Next we prove the z,, is decreasing Vn > 2.

Tn4+1 < Zn
1 1
Y1) i
1 1
S) i m

n—1 n—1
Z z; < z T + Zp
i=1 Jj=1

0<z,

Since the lemma showed all terms are positive, the last line is true. This implies the first line is also true.
Since the next element in the sequence is always less than the current, z,, must be decreasing Vn > 2.

By MCT, a decreasing sequence with a lower bound converges, so (z) converges.

Now we can use the infinity trick to find the limit.

. . 1
lim z, = lim —7——
n—o00 n—oo i=1 Ti

1 1
nooo S g3, 0 Y Tt
So

. . 1
nh—>ncl>o In = nh—>nc}o Z?:l Zi + Tp

0= lim ——
n—oo 1 + x, * Tp,

lm 1+z,-z,=1

n—0o0

lm z,-z,=0
n—00

lim z, =0
n—oo

Therefore according to the MCT and the infinity trick, (z) converges to 0. |

5 Q 14.44

Compute -7 Use this to obtain upper and lower bounds on Z:ozl #

n=1 n(n+1)

Premise: Derive an easier partial sum formula. Then define a sequence from each of the given series
and use them to give upper and lower bound on >°° -1

n=1 n2
Lemma: 377 'L(z+1) = i
Lemma Premise: Proof by induction on k.
Base case: k=1
SRS
P i(i+1) k+1
S
— i(i+1) 141
1 1
Tz v
2

_k

Inductive Step: Hypothesis ZZ 1 3041 +1) T

k+1 k

1 1 1
;z‘(iﬂ) :;z’(z’+l)+(k+1)(k+2)

_ k n 1 _ k(k+2)+1
k+1 (k+1)(k+2) (k+1)(k+2)
(k+1)2 _k+1
(k+1)(k+2) k+2
Then by the principle of induction, the hypothesis of the lemma is true. O

So using the lemma

We know from class that

lim 0 < lim
n—o00 n—oo N + 1 n—oo N

0< lim

< <0
n—oo n +

lim =0
n—oo n + 1

So -
1
Doy =1
i n(n+1)
Now that we know this, we can do a sequence analysis. We use the property of real numbers that
a<b c<d = a+c<b+d

So if we have two sequences, (4) and (B) where Vi € N, A; < B; then the series >0 A; < Y o B;.

Let (A) be made of individual terms from >
it -

=i n(n +1y» and let (B) be made of individual terms from

1 1
G+l 2
11
G+1) "3

0<1 v

So

=1
1<Zﬁ
n=1

To get the other bound, we shift (B) one over.

(B
—1 1 &1 1
- == — =1 N
SETETS DE TN Do
Let (B) now be the individual terms of the series on the RHS.
1 1
- <
(t+1)2 " i(i+1)
1

(i+1)
0<1 v

S| =

<

So

o0 oo

Y Bi<> A

=0 =0
oo
1
— <1
2 iy
1

—_— < 2
CESE

M8

1+
1

3
Il

RN

and some facts about sequences, we derived an upper

||M8
/-\’H
M

So using the computation for Y - ; n(n1+1)

bound, 2, and a lower bound, 1, for $ >

nln2

MATH 347 HW8

Charles Swarts
swarts2@illinois.edu

November 2016

1 Q1

the official definition of divisibility a | b:=3Im € Z: b= ma

1.1 a
If d| aand d | b, then d | ax + by for any z,y € Z.

Premise: direct method.

Suppose it is the case that d | a and d | b. And also suppose we are given z,y € Z
Then by definition of divisibility
dlae=3meZ:a=md

d|b=3n€Z:b=nd
Then by the rules of standard algebra

ax + by = xmd + ynd

az + by = (zm + yn)d

By closure (i.e. since the integers are closed under addition and multiplication i.e. an integer plus an
integer is an integer, and an integer times an integer is an integer) (zm + yn) € Z

And again by definition of divisibility,
d| az+ by

1.2 b
If a | band c|d, then ac | bd.

Premise: direct method.
Suppose it is the case that a | b and ¢ | d.

Then by definition of divisibility,
a|lb=3dmeZ:b=ma

cld=3n€Z:d=nc

Then by the rules of standard algebra
b-d=ma-nc

bd = mn - ac

By closure bd, ac, mn € Z

By the definition of divisibility,
ac | bd

1.3 c
Ifa|band c|d, then (a+c¢)| (b+d).

Premise: counter-example
Leta=1,06=2,¢c=3,d=3

By definition of divisibility:
alb=3meZ:b=ma

cld=3n€Z:d=nc
Since 2 € Z and b = 2a, by definition a | b. Since 1 € Z and d = 1¢, by definition ¢ | d. However

(a+c)=4 (b+d)=5
So if (a + ¢) | (b + d), by definition,
JieZ: (b+d)=I(a+c)
(b+ d) _
a+c
Sez P
1 X

Hence we have found an example where a | b and ¢ | d, but W

2 Q2

basic definition of congruence: a =bmodm =3k €Z:a=b+km

2.1 a

If a = bmod m and ¢ = d mod m, then ac = bd mod m.
Premise: direct method.

Suppose a = b mod m and ¢ = d mod m.
Then by definition of congruence:
dj€Z:a=b+jm

Jk€Z:c=d+km
Then by the rules of standard algebra
a-c=(b+jm)-(d+ km)
ac=>bd + (b-km+jm-d+ jm-km)
ac = bd + m - (bk + jd + jkm)
By closure (bk + jd + jkm) € Z

So by definition of congruence ac = bd mod m

22 b

If a = b mod m, then for any k € N, a* = b* mod m.
Premise: induction on %

Base case: Suppose a = b mod m. Then by the previous proof, using its framework, we let ¢ = a
and d = b. The result is that a? = b2 mod m.

Inductive case: Suppose a* = b* mod m. Then by the previous proof, using its framework, we let
c¢=a and d = b. The result is that a**! = b**! mod m.

By the principle of induction, if @ = b mod m, then a* = b* mod m. |

3 3

Let PP represent the set of all prime numbers. Fermat’s Little Theorem: p € P = a? = amod p

3.1 a
Fine the last decimal digit of 34701,

Premise: Since we are using the base 10 number system, finding the congruence mod 10 from the set
{0} U [9] should give the last digit.

Firstly using result from 2.b, we see
347 = bmod 10 = 347" = 5% mod 10

It is trivial to see that in this base,
347 = 7mod 10

So now we use the same process, using 2.a and 2.b

70l =7.7100 =7.4950 =7.950 =7.8125 =7.1%° = 7mod 10
So the last digit must be 7.

3.2 b
Find the remainder of 347! when divided by 101.

Premise: to find the remainder, we need to find the number from the set {0} U [101] that is congru-
ent to 347'°1 mod 101.

Using Fermat’s Little Theorem, we see that
347" = 347 mod 101
Which is most of the way, except 347 ¢ {0} U [101]

Luckily we know the definition of congruence
a=bmodm:=3k€Z:a=b+km

So
347 = 347 + —3(101) mod 101 = 44

So the remainder is 44. |

3.3 c

Using Fermat’s Little Theorem, find a number between 0 and 12 that is congruent to 2!°° modulo 13.
Premise: use Fermat’s Little Theorem, 2.a.

Since we know Fermat’s theorem, we know
2" = 2mod 13
Using this fact and 2.a, we can compute
9100 — 99 913 913 913 913 913 913 913
=22.2.2.2.2.2.2.2=2%%2=2.23=2*=16mod 13
Luckily we know the definition of congruence

a=bmodm:=3k€Z:a=b+km

So

16 =16+ (—1) - 13 = 3 mod 13
So 3 is the number between 0 1nd 12 that is congruent to 2190, |
34 d

Find the last digit in the base 8 expansion of (1)919%0,(ii)10100 (iii)111000,

Premise: Since we are converting to octal, we need to find the number which is congruent mod 8 and in
the the set {0} U [7].
3.4.1 i

By the definition of congruence
9=9+(-1)8=1mod8

Since we know that, by 2.b
91000 = 11000 = 1 mod 8

So the last digit in octal will be 1.

3.4.2 ii

By the definition of congruence
10=10+(—-1)8=2mod 8

Since we know that, by 2.b
101000 — 91000 — g250 ;1 4 @

By definition of congruence
8=8+(-1)8=0

Since we know that, by 2.b
82°0 = 050 = 0 mod 8

So the last digit in octal will be 0.

3.4.3 iii

By the definition of congruence

Since we know that, by 2.b

By the definition of congruence

Since we know that, by 2.b

So the last digit in cotal will be 1.

11=11+(-1)8 =3 mod 8
111000 — 31000 — ¢500 ;1 04 @
9=9+(-1)8=1mod8

9590 = 1500 = 1 mod 8

